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Koç University

Holger Sieg

University of Pennsylvania and NBER

Melanie Zaber

Carnegie Mellon University

July 25, 2016

∗The authors thank Philipp Kirchner, Charles Manski, Derek Neal, Cecilia Rouse, Petra Todd,
Ken Wolpin, and seminar participants at various different conferences and workshops for comments.
We would like to thank the NSF for financial support. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors and do not necessarily reflect
the views of the National Science Foundation. We also thank the National Center for Education
Statistics for access to confidential data from the National Postsecondary Student Aid Survey.



Abstract

The main purpose of this paper is to develop a new equilibrium model of private and public

school competition that captures the key institutional features of the U.S. market of higher

education and can generate realistic pricing patterns for private universities. We show that

the parameters of the model are identified and can be estimated using a semi-parametric

estimator given data from the NPSAS. We find that a $10,000 increase in family income

increases tuition at private schools by on average $120 to $140. A one standard deviation

increase in ability decreases tuition by approximately $830 to $1,750 depending on the se-

lectivity of the college. Discounts for minority students are approximately $5,750 at the

most selective private colleges. Average mark-ups are modest and range between 7 and 20

percent.

KEYWORDS: Higher education, private and public colleges, competition, federal financial

aid policies, peer effects, price discrimination, market power.



1 Introduction

The net tuition paid by any two students sitting in the same college classroom is often

quite different. Product differentiation and market segmentation together with idiosyncratic

preference shocks can generate market power for private colleges. In addition, private col-

leges and universities engage in third-degree price discrimination, conditioning institutional

financial aid on student ability, household income, and other characteristics such as minor-

ity status. Colleges compete to attract higher ability students and students who increase

diversity, while also wanting high income students who might cross subsidize desirable lower

income students. The exercise of market power can then be expected to vary across student

types. The main purpose of this paper is to develop and estimate a new equilibrium model

of private and public school competition that captures these key institutional features of the

market and can generate realistic pricing patterns for private universities.

To explain the observed pricing patterns, we need a model of demand for higher education

that captures the main restrictions that are placed on the available choice set of each stu-

dent. In our model students differ by income, ability, minority status, state of residence, and

unobserved idiosyncratic preferences for colleges. Given the large amount of heterogeneity

among students and the observed differentiation among colleges, a key challenge is to charac-

terize the admission and tuition policies of each college and hence the set of feasible choices

for each student. The model needs to account for the fact not all students are admitted to

selective colleges.

We model the coexistence of a variety of quality-differentiated public and private colleges

that compete for students by adopting admission and tuition policies. While public colleges

typically do not engage in price discrimination, they offer a relatively affordable alternative

to private colleges and thus impact the price and income elasticities of demand for private

education. We assume that public universities maximize the aggregate achievement of in-

state students. Public universities also face regulated price caps, but obtain direct subsidies

from their state legislatures. Moreover, their regulated tuitions generally differ between in-

and out-of-state students. With such a characterization of state colleges, our model shows
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that state colleges optimally use minimum ability admission thresholds that differ between

in- and out-of-state students and between minority and non-minority students. Given these

admission thresholds, we can determine the set of public schools that are feasible for each

student type.

Modeling the behavior of private schools is more challenging. We assume that private

schools maximize quality, which depends on the measured abilities of their students, the

educational resources they provide to their students, and a racial diversity measure.1 We

also assume that tuitions are constrained by an exogenously determined price cap. Assuming

a model of monopolistic competition, we derive the optimal admission and pricing policy for

each private school.

The equilibrium of the model has a number of attractive properties. First, because private

schools impose a price cap, a minimum ability threshold that characterizes admission policies

of private colleges arises. Not surprisingly, higher quality schools will have higher ability cut-

offs in equilibrium. A certain fraction of students do not obtain financial aid and pay the

maximum tuition. These are students that are below the mean ability of the school and thus

do not qualify for merit aid. Moreover, these students must have income sufficiently high so

that the price cap is binding.

For all other students, net tuition can be expressed as “effective marginal cost” plus a

mark-up. While this is not surprising, there are however important differences that distin-

guish our model from a standard oligopolistic pricing model. First, effective marginal cost

depends on the ability and minority status of a student. Pricing by ability or merit-based

aid arises because high ability students increase college quality through reputation and peer

effects. Discounts for minority students arise because they enhance diversity. Second, the

mark-up term does not depend on the overall market share of the college, but on the market

share conditional on observed student characteristics. We show that these terms can differ

by large margins among students, especially for highly selective colleges. Hence local or con-

1The resulting pricing equation is identical in form to a model in which private colleges maximize profits.
As such our empirical approach is robust to alternative specifications of the colleges’ objective functions.
Other features of the equilibrium differ as quality maximizers spend all resources on education while profit
maximizers seek to return profits to owners.
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ditional market shares drive mark-ups in the model, and not overall market shares. Third,

the mark-up can be decomposed into two additive terms. The first term takes the standard

form derived in standard discrete choice demand models. This term reflects idiosyncratic

preferences for the school and product differentiation. The second term is monotonically in-

creasing in student or household income capturing pricing by income and arises due to price

discrimination. As a consequence, our model is sufficiently rich to generate the qualitative

features of tuition policies observed in the U.S. market for higher education.

We then derive and implement a semi-parametric sequential estimator. In the first step,

we can identify and estimate a subset of the parameters using a method of moments estimator

that is based on the difference between the observed and predicted price functions at private

colleges. To implement this estimator we need a non-parametric plug-in estimator of the

conditional market share for each student at the school that is attended in equilibrium. The

remaining parameters of the model can be estimated using a modified version of Berry’s

(1994) estimator.

Two additional challenges to estimation are present that are typically not encountered in

standard demand analysis. First, the potential choice set is unobserved by the econometri-

cian. Our model implies, however, that both private and public schools use minimum-ability

threshold rules to determine admission functions. These thresholds arise because both pri-

vate and public colleges face binding price caps. We observe attendance in equilibrium and

as a consequence can estimate minimum admission thresholds using order statistics. This

allows us to characterize the relevant choice set for each student in the sample.

Second, private colleges engage in third-degree price discrimination. Hence institutional

aid and net tuition policies of all private colleges are functions of income and ability as

long as the price cap is not binding. A key challenge encountered in estimation is that the

institutional aid is only observed at the college that is attended in equilibrium. The econo-

metrician does not observe the financial aid packages and, hence the net tuition, that were

offered by the colleges that also admitted the student, but were ultimately rejected by the

student. As a consequence, we cannot directly evaluate the conditional choice probabilities
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for each student. However, we can consistently estimate the institutional aid functions of

each college type using nonparametric techniques such as kernel or sieve estimators. Given

these consistent estimators we then can compute the conditional choice probabilities of each

student.

Our estimation approach does not require us to solve for the equilibrium of the model.2

This has the virtue of simplicity and can be applied for a model with a large number of

colleges. It is also computationally feasible since we do not need to use a nested fixed point

algorithm.

We estimate the model using data from the National Postsecondary Student Aid Study.

Our sample size consists of approximately 9,500 students that attended a two-year public

community college, a four-year public college, or a four-year private college in the U.S. in

2012. While our sample size is large, it is not large enough to estimate a model at the

individual college level.3 We, therefore, use clustering algorithms to aggregate four-year

private colleges into ten types, public four-year colleges into four types, and public two-year

colleges into one type. Our empirical model thus has 15 different college types. To our

knowledge, this is the most disaggregate demand model for higher education that has ever

been estimated.

We find that the majority of private colleges engage in pricing by income, ability, and

minority status. A $10,000 increase in family income increases tuition at private schools by

on average $120 to $140. A one standard deviation increase in ability decreases tuition by

approximately $830 to $1,750 depending on the selectivity of the college. There are large

and substantial discounts for minority students that range between approximately $100 (at

historically black colleges) and $5,750. Average mark-ups are modest and range between 7

and 20 percent. There is, however, much more heterogeneity and some much larger mark-ups

2The idea of conditioning on observed choice probabilities is similar to Heckman (1979), Hotz and Miller
(1993), Berry (1994), and Aguirregabiria and Mira (2002). Our quasi maximum likelihood estimator is
most similar to the one proposed by Bajari, Hong, and Nekipelov (2010) to estimate games with incomplete
information.

3The NPSAS is the most comprehensive data set available for the U.S., but only samples a subset of all
colleges in the U.S. As a consequence some sort of aggregation is unavoidable if one estimates any demand
model for higher education using this data set.
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within colleges than among colleges.

Our paper is related to at least three different areas of research that have focused on

markets for higher education. First, there are many empirical papers that have documented

that pricing by income, ability and minority status is prevalent in the financial aid data.4

Previous structural papers have either ignored this or explained pricing by income by ap-

pealing to a motive of serving the poor or providing important socio-economic diversity on

campus.5

Second, our work is related to research that has modeled admission and attendance de-

cisions in the market for higher education. The informational environment in our model

implies students face no uncertainty in admissions, so we can abstract from an application-

admission game with incomplete information. Avery and Levin (2010), Chade, Lewis, and

Smith (2014) and Fu (2014) provide a detailed analysis of these issues. Our model also

abstracts from choices made by students once they enter college. The most important de-

cision is the choice of a major. Arcidiacono (2005) and Bordon and Fu (2015) develop and

estimate a dynamic models of choice of academic major under uncertainty.6 Last, in Epple,

Romano, Sarpca, and Sieg (2016), we employ a simplified version of the theoretical model

to examine computationally effects of policy changes on attendance patterns and student

costs. We abstract from minority status, have fewer colleges, and impose an equilibrium

selection criteria. These simplifications allow us to solve for equilibrium in the model and

perform policy analysis. Most importantly, we do not estimate the parameters of the model

or conduct any empirical analysis of price discrimination and market power in that paper.

Finally, our paper is related to recent research on the importance of peer effects in ed-

ucation. Regarding peer effects in schools, there is a large literature by social scientists.

Methodological issues are discussed in Manski (1993), Moffitt (2001), and Brock and Durlauf

(2001). Recent research on peer effects in higher education includes studies of college dormi-

4For a discussion of that literature see, among others, Hoxby (1997, 1999), Epple, Romano, and Sieg
(2003), and McPherson and Schapiro (2006).

5The former approach is taken in most theoretical papers on higher education. The latter approach is
taken in Epple, Romano, and Sieg (2006).

6Wiswall and Zafar (2015) exploit an informational experiment to study major choice.
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tory roommates (Sacerdote (2001), Zimmerman (2003), Boisjoly, Duncan, Kremer, Levy, and

Eccles (2006), Stinebrickner and Stinebrickner (2006) and Kremer and Levy (2008)), dor-

mitory residential groupings (Foster, 2006), randomly formed groups in military academies

(Lyle (2007, 2009) and Carrell, Fullerton, and West (2009)), classroom peer effects (Arcidia-

cono, Foster, Goodpaster, and Kinsler, 2012), effects of high school peers (Betts and Morell,

1999), and peer effects among medical students (Arcidiacono and Nickolson, 2005).7 We do

not provide any direct evidence on the importance of peer effects, but provide strong indirect

evidence based on our analysis of pricing by ability, income, and minority status.

The rest of the paper is organized as follows. Section 2 introduces the model that charac-

terizes student sorting and price and admission policies in equilibrium. Section 3 introduces

a parametrization and discusses our estimator. Section 4 introduces our data set and pro-

vides descriptive statistics. Section 5 reports our parameter estimates and summarizes our

main empirical findings. Section 6 concludes the analysis.

2 A Model of Price Discrimination

We consider a model with S regions or states and normalize the student population in the

economy to 1. Let πs denote the student population proportions or size of each state and

note that
∑S

s=1 πs = 1. Students in each state differ continuously by after-tax income y

and ability b. Students also differ by minority status which is a discrete indicator variable

m ∈ {0, 1}. Let fs(b, y|m) denote the density of (b, y) in state s conditional on m. The

fraction of of type m households in state s is denoted by πsm and note that
∑

m πsm = πs.

For expositional simplicity, we assume each state operates one public university. In our ap-

plication discussed below, we extend the model and allow for product differentiation among

public colleges within a state.8 In addition to the S public universities, there are P private

universities that operate nationwide and also compete for students. There is an outside op-

tion which we model as attending a two-year public college. The total number of alternatives

7See Epple and Romano (2010) and (Sacerdote, 2011) for a more complete literature survey.
8Our empirical model allows for up to four types in each state.
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is then J = S + P + 1.9

A student with ability b that attends a university of quality qj has an achievement denoted

by a(qj, b). Let psj(m, b, y) denote the tuition that a student from state s with ability b,

income y, and minority status m pays for attending college j. Let Asj(y) denote federal aid

and L the cost of living of attending a college. As detailed below, federal aid depends on

income and the cost of attending a college, which varies with a student’s state of residence

if attending a state college. Let εj denote an idiosyncratic preference shock for college j,

which is private information of the student.

Assumption 1 The utility of student (s,m, b, y) for college j is additively separable in the

idiosyncratic component and given by:

Uj(s,m, b, y, εj) = U(y − psj(m, b, y)− L+ Asj(y), a(qj, b)) + εj. (1)

U(·) is an increasing, twice differentiable, and quasi-concave function of the numeraire and

educational achievement, a(·). Educational achievement is an increasing, twice differentiable,

and strictly quasi-concave function of college quality and own ability.

Utility depends on location and minority status only because tuition depends on location

and minority status. The dependence on location can arise for two reasons. First, state

colleges are likely to give preferential treatment to locals. Second, private colleges may use

different mark-ups to students coming from different states because these students may face

different state college options. The dependence on minority status follows from the fact that

colleges value diversity as discussed below.

Let Sa(s,m, b) denote the subset of state colleges to which student (s,m, b, y) is admitted,

Pa(s,m, b) the same for private colleges, and Ja(s,m, b) ⊂ Sa(s,m, b) ∪ Pa(s,m, b) ∪ O the

options that provide positive utility available to the student. Taking as given tuitions,

9We abuse notation for convenience by using S to denote both the number of state colleges and the set of
them {1, 2, . . ., S}, and likewise for P and J (which usage will be obvious by context). Also for expositional
convenience, we sometimes refer to university j from the set of all alternatives J , though this includes
non-universities like the two-year public college.
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qualities, and non-institutional aid, student (s,m, b, y) chooses among j ∈ Ja(s,m, b) to

maximize utility (1). Let the optimal decision rule be denoted by δ(s,m, b, y, ε).

Assumption 2 The vector ε satisfies standard regularity assumptions in McFadden (1974).

Integrating out the idiosyncratic taste components yields conditional choice probabilities

for each type:

rsj(m, b, y;P (m, s, b, y), Q) =

∫
1{δj(s,m, b, y, ε) = 1} g(ε) dε, (2)

where 1{·} is an indicator function, δj(·) = 1 means college j is chosen, P (s,m, b, y) denotes

the vector of tuitions that apply to student type (s,m, b, y), and Q denotes the vector of

college qualities.

Private colleges attract students from all states of the country. Their objective is to

maximize quality. College j has a cost function

Cj(kj, Ij) = Fj + Vj(kj) + kjIj, (3)

where kj denotes the size of college j’s student body and Ij expenditures per student on

educational resources in college j. The costs Fj + Vj(kj) are independent of educational

quality, which we refer to as “custodial costs.” Moreover, each college obtains an exogenous

amount of non-tuition income denoted by Ej. Finally, private colleges also have exogenous

price caps, denoted by p̄j.

Letting θj denote mean ability in college j’s student body and Γj the fraction of minority

students, college quality is given by

qj = qj(θj, Ij,Γj) (4)

which is a twice differentiable, increasing, and strictly quasi-concave function of (θj,Ij,Γj).

Quality increases with average student ability due to a combination of peer learning effects,
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non-learning externalities from developing relationships with high ability peers, and repu-

tation effects.10 Quality increases with diversity as having diverse student peers enhances

post-college success in a diverse workplace.11

Colleges maximize quality behaving as competitive monopolists. Private college j takes

as given other colleges’ tuitions and qualities when maximizing quality. We can write the

quality optimization problem of private college j as follows:

max
θj ,Ij ,Γj ,kj ,psj(b,y)

q(θj, Ij,Γj) (5)

subject to a revenue constraint

Rj =

∫ ∫ S∑
s=1

∑
m

πsm psj(m, b, y) rsj(m, b, y;P (m, s, b, y), Q) fs(b, y|m) db dy + Ej (6)

a budget constraint

Rj = Fj + Vj(kj) + kjIj (7)

identity constraints,

θj =
1

kj

∫∫
b

(
S∑
s=1

∑
m

πsmrsj(m, b, y;P (m, s, b, y), Q)fs(b, y|m)

)
db dy (8)

kj =

∫∫ ( S∑
s=1

∑
m

πsmrsj(m, b, y;P (m, s, b, y), Q)fs(b, y|m)

)
db dy, (9)

Γj =

∫∫ ( S∑
s=1

πs1rsj(1, b, y;P (1, s, b, y), Q)fs(b, y|1)

)
db dy

/
kj, (10)

and the price cap constraint

psj(m, b, y) ≤ p̄j. (11)

10In as much as there are non-learning and reputation effects of having higher ability peers embodied in
θ, what we have labeled ”achievement” must be more broadly interpreted as any utility enhancing college
effect. See, for example, MacLeod and Urquiola (2015).

11Our assumption that quality increases with the proportion of minorities assumes they are under-
represented. In fact we estimate the opposite in historically black colleges.
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We can solve the private college’s problem.12 Assuming that the price cap is not binding,

for any student (s,m, b, y) with rsj > 0, tuition satisfies:

psj(m, b, y) +
rsj(m, b, y; ·)

∂rsj(m, b, y; ·)/∂psj(m, b, y)
= EMCj(m, b) (12)

where

EMCj(m, b) ≡ V ′j + Ij +
qθ
qI

(θj − b) +
qΓ

qI
(Γj −m) (13)

The left-hand side of (12) is the usual expression for marginal revenue. The right-hand side

of expression (12) is the “effective marginal cost” of student (s,m, b, y)’s attendance, which

sums the marginal resource cost given by the first two terms and the marginal peer costs

given by the last two terms. The ability-based marginal peer cost (third term) multiplies the

negative of the student’s effect on the peer measure (equal to (θ− b)/k) by the resource cost

of maintaining quality (equal to ∂q/∂θ
∂q/∂I

k). The diversity marginal peer cost has analogous

decomposition. Note that EMC varies with students in college j only with the student’s

ability and minority status. The ability-based marginal peer cost is negative for students of

ability exceeding the college’s mean, and the diversity-based marginal peer cost is negative

for minorities.

Students are admitted to the college if and only if

min{p̄j, psj(m, b, y)} ≥ EMCj(m, b) (14)

Equation (14) yields minimum ability thresholds that vary with minority status for each

private college implicitly defined by:

p̄j = EMCj(m, b
min
jm ) (15)

Since effective marginal cost decreases with ability and is lower for a minority student of

12An appendix is available upon request from the authors that derives the optimality conditions for the
private and the public school’s optimization problem.
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given ability, the admission threshold for minorities is lower.

It is interesting to compare this result to that for a profit-maximizing private college. It

is not hard to show that a profit-maximizing college would have a tuition function that is

of the exact form of (12). The main objective of the paper is to determine the empirical

content of the pricing equation in (12). Our estimation approach, discussed in detail in the

next section, is therefore consistent with quality or profit maximization assumptions.

Distinguishing quality and profit maximization empirically would require distinguishing

relatively subtle differences between equilibria under the two alternatives.13 Given educa-

tional inputs, the quality maximizing college sets tuition to maximize profits, while taking

account of the peer value effects, so as to have the maximum funds to increase quality. How-

ever, the quality maximizing college has stronger incentive to spend on educational inputs,

implying inputs will be higher in (12). Moreover, for qII < 0, the latter implies the weight

on the ability-based peer effect (θ− b) in (12) will differ, implying the quality maximizer has

stronger incentives to attract higher ability students. Likewise, the quality maximizer has

stronger incentives to attract minorities.

To test the implications of equation (12), we need to close the demand model and derive

the conditional market shares for each private college. For that we need to derive the

admission policies of state schools. From an empirical perspective, we will only require that

public colleges adopt minimum ability admission thresholds that depend on the state of

residence and the minority status of the student. Next we present a model of state colleges

that generates admission policies that have these properties.

From the perspective of a state college, a student with characteristics (m, b, y) is either

an in-state student or an out-of-state student. We assume that tuition charged to in-state

students is fixed exogenously at Ts and to out-of-state students at Tso. The state also

provides its college an exogenous per student subsidy of zs, financed by a balanced budget

state income tax denoted ts.

We also assume a state college maximizes the aggregate achievement of its in-state stu-

13See Epple and Romano (1998, 2008) for an analysis of profit maximization by (secondary) schools in a
related model.
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dents. Letting γs(m, b, y) ∈ [0, 1] denote the fraction of in-state students of type (m, b, y)

state college s admits and rss(m, b, y) the fraction of those admitted that attend, the state

college maximizes:

∫∫ ∑
m

πsm a(q(θs, Is,Γs),m, b) γs(m, b, y) rss(m, b, y;P,Q) fs(b, y|m) db dy. (16)

To write a state college’s optimization problem while taking account of the constraints, let

γso(m, b, y) ∈ [0, 1] denote the proportion of out-of-state students of type (m, b, y) the

college admits and rts(m, b, y;P,Q) the fraction of those admitted from state t 6= s that

attend.14 State college s solves:

max
θs,Is,ks,γs(b,y),γso(b,y)

∫∫ ∑
m

πsm a(q(θs, Is,Γs),m, b) γs(m, b, y) rss(m, b, y;P,Q) fs(b, y|m) db dy

subject to the identity constraints:

θs =
1

ks

∫∫ ∑
m

b πsm γs(m, b, y)rss(m, b, y;P,Q)fs(b, y|m)dbdy

+
1

ks

∫∫ ∑
m

b γso(m, b, y)

(∑
t6=s

πtmrts(m, b, y;P,Q)ft(b, y|m)

)
dbdy (17)

and

ks =

∫∫ ∑
m

πsmγs(m, b, y)rss(m, b, y;P,Q)fs(b, y|m) db dy

+

∫∫ ∑
m

γso(m, b, y)

(∑
t6=s

πtmrts(m, b, y;P,Q)ft(b, y|m)

)
dbdy (18)

14The value to college s of attracting an out-of-state student of type (m, b, y) does not vary with the state,
implying it is optimal to admit out-of-state students of type (m, b, y) with the same frequency, i.e. γ need
not vary by the outside state. The yield will vary in general, however.
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and

Γs =
1

ks

∫∫
πs1γs(1, b, y)rss(1, b, y;P,Q)fs(b, y|1) db dy

+
1

ks

∫∫ ∑
m

γso(1, b, y)

(∑
t6=s

πt1rts(1, b, y;P,Q)ft(b, y|1)

)
dbdy (19)

the budget constraint:

Fs + Vs(ks) + ksIs − zsks = Rs (20)

the revenue constraint:

Rs =

∫∫ ∑
m

pss(m, b, y)πsγs(m, b, y)rss(mb, y;P,Q)fs(b, y|m)dbdy (21)

+

∫∫ ∑
m

γso(m, b, y)

(∑
t6=s

πtmpts(m, b, y)rts(m, b, y;P,Q)ft(b, y|m)

)
dbdy

the tuition regulation constraint:

pts(m, b, y) =

 Ts for all students (t,m, b, y) with t = s

Tso for all students (t,m, b, y) with t 6= s
(22)

and the feasibility constraints:

γs(m, b, y), γso(m, b, y) ∈ [0, 1] for all students (s,m, b, y) (23)

Solving the optimization problem, we find that a state college s admits all in-state students

with b ≥ bmin
sm , the latter satisfying

a(q(θs, Is,Γs), b
min
sm )/λ + Ts + zs − EMCs(m, b

min
sm ) = 0; (24)

where λ is the positive multiplier on the budget constraint. All out-of-state students with
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b ≥ bmin
om are admitted, where

Tso + zs − EMCsm(m, bmin
om ) = 0 (25)

Out-of-state students are admitted if and only if the revenue they generate covers their

EMC(m, b). Their value to the state school comes from their tuition and, perhaps, positive

peer effects on in-state students. In-state students have an additional marginal value of atten-

dance, specifically their direct contribution to the college’s objective of in-state achievement

maximization. The term a/λ in (25) equals the monetized value of the increase in aggre-

gate state achievement from the in-state student’s attendance. The admission thresholds

for in-state and out-of-state minority students will be lower relative to their respective non-

minority in-state and out-of-state counterparts. Given minority status, comparing admission

thresholds of in-state and out-of-state students, (25) and (26) imply:

bmin
sm < (=) (>) bmin

o,m as a(q(θs, Is,Γs), b
min
sm )/λ + Ts > (=) (<) Tso. (26)

While Ts < Tso empirically, it may also be that a(q(θs, Is,Γs), b
min
sm )/λ + Ts > Tso, implying

lower admission standards for in-state students. This is what we find empirically.

In summary, we have derived the optimal pricing equation for each private college and

shown how to derive the effective choice sets for each student. As a consequence, we are now

in a position to turn to empirical analysis and determine whether the pricing and sorting

predictions of this model are consistent with the observed data.

3 Estimation

3.1 A Parametrization

To estimate the model we need to invoke some additional parametric assumptions.

Assumption 3
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a) The quality function is given by

qj = θγj I
ω
j Γκj e

uj , γ, ω, κ > 0 (27)

where uj is an unobserved exogenous characteristic.

b) The utility function is given by:

Uj(y − psj − L+ Asj, a(qj, b)) = α ln(y − psj − L+ Asj) + α ln(qjb
β) + εj, β, α > 0 (28)

where α parameterizes the weight on the systematic component of utility.

c) The disturbances εj are independent and identically distributed with Type I Extreme

Value Distribution.

The assumptions above then imply that the conditional choice probability for type (s,m, b, y)

is given by, for j ∈ Ja(m, s, b):

rsj(m, b, y) =
[(y − psj(m, b, y)− L+ Asj(y)) qj]

α∑
k∈Ja(m,s,b)[(y − psk(m, b, y)− L+ Ask(y)) qk]α

. (29)

The pricing equation for private colleges satisfies:

psj(m, b, y) =
(1− rsj)α

1 + (1− rsj)α
EMCj(m, b) +

1

1 + (1− rjs)α
(y − L+ Asj(y)) (30)

Effective marginal costs at private colleges are given by:

EMCj(m, b) = V ′j + Ij +
γIj
ωθj

(θj − b) +
κIj
ωΓj

(Γmj −m) (31)

The pricing function for all students not at the cap can be written as:

psj(m, b, y) =
(1− rsj)α

1 + (1− rsj)α

(
V ′j + Ij +

γIj
ωθj

(θj − b) +
κIj
ωΓj

(Γj −m)

)
(32)

+
1

1 + (1− rjs)α

(
y − L+ Asj(y)

)
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In addition we simplify notation by writing the marginal resource costs as

Vj = V ′(kj) + Ij (33)

We treat the V1, ...VJ as additional parameters to be estimated.

The model implies an appealing decomposition of tuition. From (30), observe that tuition

to student (s,m, b, y) is a convex combination of the student’s effective marginal cost and

cost adjusted income. The weight on income increases with the student type’s market share

at the college indicating increased market power over the student. The weight on income

decreases with α, the weight on the systematic component of utility. This indicates that

market power declines as idiosyncratic preferences become less important.

3.2 The Information Set

The information set of the econometrician can be characterized as follows.

Assumption 4

• We observe a sample i = 1, ..., N . Let si denote the state of student i, mi the minority

status, bi ability, yi income and ps,j,i, the tuition at college j. Note that we only observe

the tuition at the college attended in equilibrium. Let dji denote an indicator which is

equal to one if student i attends college j and zero otherwise.

• L is known.

• θj, Ij, kj are known for all j.

• In- and out-of-state tuitions at state colleges (p̄js) and price caps at private colleges

(p̄j) are known.

• Asij(yi) are observed for all i and j.

16



• Prices for all students at private colleges that are not paying the cap are measured with

classical error:

p̃sji = psi,j(mi, bi, yi) + vi,j (34)

where vi,j is iid across i and j.

3.3 A Semi-parametric Estimator

Consider the subsample of students that attend private colleges and are not at the price cap.

Using this subsample we can identify and estimate most of the parameters of the model using

the predictions of the model about price discrimination. In particular, we can implement

the following sequential estimator.

We non-parametrically estimate the conditional market shares rsj(m, b, y) for all students

for the private college that is attended in the data. We use a simple flexible Logit estimator

using a quadratic approximation in b and y, where the coefficients depend on m and s. We

then use the estimated Logit model to predict the conditional choice probability denoted

by r̂sj(m, b, y). Alternatively we could use nonparametric techniques such as kernel or sieve

estimators.

Substituting the estimator of the conditional market share into the pricing equation, we

obtain:

psj(m, b, y) =
(1− r̂sj)α

1 + (1− r̂sj)α

(
Vj + Ij +

γIj
ωθj

(θj − b) +
κIj
ωΓj

(Γj −m)

)
(35)

+
1

1 + (1− r̂js)α

(
y − L+ Asj(y)

)
+ vsji

where vsji is the measurement error term. We can, therefore, identify and estimate α, the

ratios γ/ω and κ/ω, as well as the marginal costs V1, ..., VJ using a semi-parametric NLLS

estimator based on equation (35). We use a bootstrap algorithm to estimate the standard

errors to account for the sequential nature of the estimation procedure.
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Most of the empirical results reported on this paper are based on this estimator. One nice

property of this estimator is that it is consistent for large N , but small J . This scenario is

relevant for most practical applications.

For certain applications knowledge of the level of ω, γ, and κ is useful. We, therefore,

finish this section by discussing how to identify and estimate the levels of these parameters

using a modified version of the estimator suggested by Berry (1994). Consider the full sample

of all students including those students that attend private colleges and that are at the cap

as well as students attending public colleges and universities.

We can construct the minimum ability threshold for each college, by computing the min-

imum ability of the students. Let our estimator be denoted by bminjm . We can then identify

the choice set for all students as follows:

Ja(m, s, b) = {s|b ≥ bminsm } ∪ {o ∈ S \ {s}|b ≥ bminom } ∪ {j ∈ P |b ≥ bminjm } ∪ {0} (36)

The first and second sets are, respectively, the in-state public colleges and the out-of state

public colleges admitting the student. The third set denotes the set of all private colleges to

which the student is admitted, and the last set is the outside option.

We then non-parametrically estimate the prices for each student at each college to which

the student was admitted based on the observed tuition levels, using a local smoothing

quadratic polynomial that uses a bin width of half of all points for each local estimation.

Let us denote these estimates by p̂npsji.
15

Substituting the nonparametric estimates of the tuitions into the conditional choice prob-

abilities, we obtain

r̂ji =
[(yi − p̂npsji − L+ Asi,j(yi))qj]

α∑
k∈Ja(mi,si,bi)

[(y−p̂
np
ski − L+ Ask(yi))qk]α

(37)

Following Berry (1994), the quality levels for each school are determined by the fixed

15Details about the implementation of this estimator are given in Appendix B.
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point of the following mapping:

q̃j = qj + ln(sNj )− ln(sj(q)) j = 1, ..., J − 1 (38)

where: qj is initial guess of the quality, sNj is the average empirical market share of college j

observed in the data, and sj(q) is the predicted average market share using the initial guess

about the vector of qualities:

sj(q) =
1

N

n∑
i=1

r̂ji (39)

We can identify qj’s for each college, subject to a normalization such as q1 = 1. The

normalization of quality is necessary since market shares add up to one.

Using the fact that qj = θγj I
ω
j Γκj e

uj we obtain the the following regression model:

ln(qj/q1) = ω
(γ
ω

ln(θj) +
κ

ω
ln(Γj) + ln(Ij)−

γ

ω
ln(θ1)− κ

ω
ln(Γ1)− ln(I1)

)
+ uj − u1 (40)

Define

wj =
γ

ω
ln(θj) +

κ

ω
ln(Γj) + ln(Ij)−

γ

ω
ln(θ1)− κ

ω
ln(Γ1)− ln(I1) (41)

and note that wj is known at this point. Rewriting equation (40) as

ln(qj/q1) = ω wj + uj − u1 (42)

and hence ω can be estimated using least squares. Note that OLS is consistent despite the

fact that wj and uj−u1 may not be independent because the regression above does not have

an intercept. Note that the last step of the estimator requires a large number of colleges or

preferably multiple markets.
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4 Data

Our data source is the 2011-12 National Postsecondary Student Aid Study (NPSAS) from

the National Center for Education Statistics (NCES).16 Our model focuses on initial atten-

dance/matriculation outcomes. We construct our sample using first-year students, who are

oversampled in this wave of the NPSAS and constitute more than half of all observations.17

We drop some students whose behavior or characteristics require separate modeling. These

include multiple attenders–students who switch institutions in their first academic year.18

These also include a larger number of students with atypical attendance patterns–those who

attend part-time or part-year, as is often the case at two-year colleges. We also drop veterans

and athletes because their financial aid opportunities are different from those faced by the

average student, and their priorities in selecting an institution may also differ. We drop

foreign students (or students with no state residence) for two reasons: (i) Their choice sets

possibly include the universities in their home country, as well as universities in other non-

home countries (based on their decision to study abroad); (ii) Their eligibility for financial

aid and their pricing by colleges may differ.

Ability is a key variable in our analysis and we drop observations with missing components

of the ability measures (ACT or SAT score and high school GPA).19 We drop all students

attending schools at which we cannot match institutional expenditures. Finally there are

a few sample schools that offer both 4-year and 2-year degrees, and we drop their 2-year

enrollees (the minority) and treat them as 4-year institutions. The resulting sample consists

16The NPSAS data are accompanied by inverse probability weights that account for the composite prob-
ability of sampling, both at the college and individual level. We use these weights throughout the empirical
analysis.

17College completion and continuation decisions are likely to differ from the initial matriculation decision.
Also, family resources and aid packages in later years of attendance need not be identical to those in the
student’s first year. For these reasons we use first-year students in our analysis.

18These constitute about 4 percent of the sample, dropped because we cannot know if the switch was
planned from the point of matriculation, and so the decision space would become much more complex.

19As approximately 40% of first-year public 2-year students do not take SATs or ACTs, it is possible that
the remaining sample is of higher ability than the general student body. Thus, our measure of average peer
quality may be biased upward for this college, and we will underestimate the quality-differentiation among
colleges. However, there is no other viable measure of student ability, and so this is an unavoidable challenge
to estimation.
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of approximately 9,490 students. Table 1 presents the numbers of these groups of students

along with their distribution over different types of colleges.

Table 1: Sample Selection

2-year public 4-year public 4-year private Total
Full NPSAS 2012 31,000 17,300 9,010 57,300
First-year only 17,860 4,530 4,210 26,590
No atypical attendance 5,380 3,370 3,470 12,220
No athletes 5,330 3,310 3,280 11,910
No veterans 5,190 3,230 3,230 11,660
No missing ability 4,180 3,160 3,170 10,510
No missing state 4,150 3,130 3,090 10,370
No missing school expenditures 3,510 2,910 3,070 9,490

Note: Unweighted counts rounded to nearest 10 as per NCES policy.

Table 2 presents selected statistics from our sample. Our measure of ability is predicted

college GPA–we model college GPA as a function of high school GPA, ACT or SAT score,

gender, and college fixed effects in a sample of non-minority four-year college students. We

then predict GPA at a generic college, using only the recovered parameters for high school

GPA, ACT/SAT score, and gender.20 This ability measure is then transformed to have unit

standard deviation and positive mean. The choice of mean ensures that the average ability

at each college is weakly greater than zero.21

Our measure of income is adjusted gross income in 2010. Where possible, NPSAS com-

putes this value based on the federal financial aid application, and uses total income (of

family or student as implied by dependency status) reported in the student interview where

no application or tax return are available. The 2010 value is used as federal financial aid

eligibility for 2011-2012 school year would be based on 2010 income. Race, ethnicity, and

gender are drawn from the student interview where possible, and from student records when

no interview is possible.

20We do not account for minority status in this regression although it could be easily done. A priori one
can make arguments in favor and against either approach.

21Appendix A provides additional details. It also explains the construction of the ability thresholds used
for each cluster/
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In-state status is determined by comparing the student’s reported state of residence with

the imputed availability of public college types. We calculate total institutional aid by taking

the sum of grants, one-half of work study, and one-quarter of loans. Thus, net tuition is the

posted tuition less the sum of institutional aid (federal aid is considered separately).

Table 2: Selected Characteristics for NPSAS 2012 Sample

Public 2-yr Public 4-yr Private 4-yr All
Number of students 3,510 2,910 3,070 9,490
Number of students (weighted)* 521,638 583,844 342,519 1,448,001
Number of Colleges 300 250 350 900
Number of Colleges (weighted)** 1549 713 1286 3548
Average ACT Score 19.72 21.88 23.79 21.55
Average Ability 0.00 0.45 0.81 0.37
Average In-state Tuition*** 3.00 5.73 26.37 12.02
Average Out-of-state Tuition 6.48 15.48 26.37 15.50
Average Income 48.4 76.9 94.8 70.9
Female 0.53 0.54 0.57 0.55
Black 0.18 0.17 0.14 0.17
Hispanic 0.19 0.13 0.11 0.15

*Students are weighted to be nationally representative, using inverse probability weights provided by the NCES. All
other student-level statistics (e.g. ACT score, gender) are also weighted.
**Colleges are weighted to be nationally representative, using inverse probability weights provided by the NCES.
Tuition values are also weighted.
***Tuition and income reported in $1,000s.

Note: Unweighted counts rounded to nearest 10 as per NCES policy.

Federal aid is limited to Pell grants, which are calculated by the formula

A = min
{

max {0, COA− EFC(y)}, 5500
}
, (43)

where COA is the federally determined cost–of-attendance and EFC(y) the federally deter-

mined expected family contribution, which increases with household income. Pell grants

are awarded up to COA − EFC if positive, but with a maximum of $5500. However, in

practice, we use the amended formula:

A = min
{

max {0, p̄j + L− EFC(y)}, 5500
}
, (44)
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as cost of attendance (tuition plus estimated non-tuition costs) varies by student-college

combination and is only occasionally observed at the attended college, and never observed

for potential alternatives. EFC is directly reported in the NPSAS, and thus can be used

both for the attended college as well as the potential alternatives.

Then we calculate the Pell aid at each college using the above formula, also adjusting to

account for the Pell minimum award (in 2012, 555 dollars). Any student offered at least half

of the minimum, but less than the minimum, is given the minimum, and any student eligible

for less than half of the minimum was awarded no aid. Additionally, we have many “never-

takers” in our sample, and so if we observe a student to be a never-taker at the attended

college when eligible for some aid, we assume he is a never-taker at all colleges.

Our sample includes observations from approximately 900 colleges. The number of stu-

dents observed per college averages about 11. Having more observations per college is desir-

able for precision when testing within-college predictions of the model. At the same time, our

model implies that colleges with similar characteristics would make similar admission and

pricing decisions. Working with smaller choice sets (fewer colleges) also has computational

advantages. For these reasons, we group together colleges that are similar in their key char-

acteristics for our purposes. In particular, we group public and private colleges separately

based on the joint variance of sticker price tuition, average ACT score, and instructional

expenditures per student, using k-means clustering. We choose the number of clusters based

on the elbow method, increasing the number of clusters until the marginal cluster does not

significantly decrease the within-group variance, which suggests approximately four clusters

of public four-year colleges, and approximately twelve clusters of private four-year colleges.

The “rule of thumb” relates the suggested k to the number of schools to cluster, k =
√

n
2
,

implies approximately 13 private clusters (npriv=350). We initially create twelve private

clusters, but then combine two sets of resulting cluster pairs to ensure an adequate sample

size of students at each cluster. Table 3 presents the key characteristics of private and public

clusters, ordered within the two college groups by mean ACT. The term “college” will refer

to a cluster in the rest of the paper.
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Table 4 reports ”local” market shares for non-minority students at the two most selective

private colleges, with these market shares conditional on deciles for income and ability.22 Be-

cause colleges value student ability and price discriminate according to income and ability,

the equilibrium exercise of market power will vary with student characteristics. We provide

evidence on this below–the conditional market shares for high ability and high income stu-

dents in these clusters are much larger than the overall unconditional market share, which is

equal to 0.08. As a consequence the college has significantly larger local market power than

is suggested by its overall market share.

Table 4: Student Sorting at High Quality Colleges (Clusters 1 and 2)

income percentile
ability 10 20 30 40 50 60 70 80 90 100

10 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.02 0.00
20 0.01 0.02 0.00 0.00 0.00 0.03 0.01 0.02 0.03 0.06
30 0.01 0.00 0.00 0.00 0.02 0.05 0.00 0.04 0.03 0.05
40 0.03 0.02 0.01 0.01 0.04 0.01 0.01 0.00 0.04 0.02
50 0.02 0.01 0.00 0.02 0.02 0.06 0.03 0.04 0.09 0.11
60 0.00 0.02 0.01 0.00 0.02 0.04 0.08 0.05 0.04 0.05
70 0.00 0.01 0.01 0.02 0.06 0.05 0.03 0.10 0.08 0.08
80 0.04 0.08 0.05 0.07 0.07 0.11 0.04 0.05 0.07 0.24
90 0.08 0.07 0.04 0.07 0.13 0.20 0.10 0.07 0.20 0.23
100 0.22 0.28 0.37 0.18 0.29 0.28 0.38 0.31 0.41 0.53
Note: Table gives proportion of each income-ability percentile combination
attending colleges in Cluster 1 or 2. Proportions are unweighted.

Table 5 summarizes the reduced form evidence regarding pricing by income and ability

in private colleges. Tuition is regressed on student characteristics for each cluster. Note

that clusters 1 and 2 are the most selective private colleges. For those we find significant

pricing by income on the magnitude between 0.024 and 0.044, i.e. a $10,000 increase in

family income increase tuition by $240 to $440, on average. In contrast, the four colleges

with the lowest average peer quality, 7, 8, 9, and 10, show no indication of significant pricing

by income.

22We use deciles, though localness can be defined using a finer or broader delineation.
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Table 5: Pricing By Income, Ability, and Minority Status

(1) (2) (3) (4) (5)

Constant 1.201*** 1.457*** 1.803*** 1.887*** 1.519***
(0.262) (0.232) (0.108) (0.076) (0.066)

Income 0.044*** 0.024*** 0.003 0.018*** -0.002
(0.012) (0.005) (0.005) (0.004) (0.005)

Ability -0.152 0.021 -0.239*** -0.204*** -0.086**
(0.129) (0.132) (0.064) (0.05) (0.04)

Minority -0.241 -0.476 0.143 -0.440*** -0.213**
(0.364) (0.375) (0.346) (0.159) (0.106)

N 140 140 100 350 290
R2 0.099 0.147 0.143 0.104 0.025

(6) (7) (8) (9) (10)

Constant 1.520*** 1.319*** 1.100*** 1.123*** 0.464***
(0.063) (0.044) (0.055) (0.065) (0.128)

Income 0.016*** 0.001 -0.002 0.004 0.016
(0.004) (0.003) (0.006) (0.008) (0.013)

Ability -0.098** -0.024 -0.119*** -0.190*** -0.048
(0.041) (0.032) (0.04) (0.037) (0.07)

Minority -0.231** -0.075 -0.036 -0.005 0.235
(0.1) (0.083) (0.104) (0.092) (0.188)

N 350 450 130 210 100
R2 0.083 0.003 0.068 0.117 0.033

Note ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Unweighted counts rounded to the nearest 10 as per NCES policy.
Sample is private school students receiving some institutional aid.
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Moreover, colleges engage in significant pricing by ability. Six of the ten estimated coef-

ficients are negative and statistically significant. Interestingly, the colleges with significant

pricing by ability come from the middle of the average peer quality distribution–neither the

highest nor the lowest quality colleges have significant pricing by ability. A one standard

deviation increase in ability decreases tuition by up to $2,390.

The majority of colleges have minority coefficients with a negative sign; notably, cluster

10, which contains several historically black colleges, has a nearly significant positive sign.

Where significant, pricing by minority varies in magnitude from a $2,130 discount to a $4,400

discount for minority students.

5 Empirical Findings

Table 6 summarizes the parameter estimates for the first stage of the sequential estimator.

Note that these estimates are based on the subsample of students at private universities that

received a positive amount of institutional financial aid. The relevant sample size is 2,270.

Using the weights suggested by NPSAS, we obtain an estimate of α which is equal to 70.27

with an estimated standard error of 6.68 (see column 2). As a consequence we find that our

estimate is highly significant at standard levels of significance. Note that α is primarily

identified from the observed pricing by income. The average predicted marginal effect of

income on price is 0.015. The other structural parameter that is identified is the ratio of γ
ω

.

Our point estimate equals 0.073 with an estimated standard error of 0.012. Recall that this

ratio is primarily identified off the observed merit based aid. The average predicted marginal

effect of ability on price is -0.116. We conclude that both key parameters are estimated with

high precision. Furthermore, they are consistent with reduced form evidence of these effects.

We can also estimate the marginal resource costs of admitting an additional student to

the college. Not surprisingly we find that there is much heterogeneity in marginal costs.

Our estimates range between approximately $5,414 and $16,527. Note that these estimates

combine marginal expenditures on educational inputs and marginal custodial costs.
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Table 6: Parameter Estimates I

(1) (2) (3) (4) (5)
Clusters all all 1 & 2 1 & 2
Weights No Yes Yes Yes Yes
α 86.56*** 70.26*** 72.72*** 76.88*** 78.54***

(8.58) (6.68) (7.13) (17.01) (17.75)
γ
ω

0.074*** 0.0734*** 0.079*** 0.046 0.056
(0.012) (0.012) (0.012) (0.049) (0.049)

κ
ω

0.012*** 0.008
(0.003) (0.006)

V1 1.22*** 1.21*** 1.23*** 1.17*** 1.19***
(0.07) (0.07) (0.07) (0.11) (0.11)

V2 1.69*** 1.65*** 1.66*** 1.56*** 1.56***
(0.07) (0.07) (0.07) (0.11) (0.11)

V3 1.43*** 1.40*** 1.41***
(0.08) (0.08) (0.08)

V4 1.82*** 1.81*** 1.82***
(0.05) (0.05) (0.05)

V5 1.15*** 1.14*** 1.14***
(0.05) (0.05) (0.05)

V6 1.48*** 1.46*** 1.46***
(0.04) (0.04) (0.04)

V7 1.15*** 1.13*** 1.14***
(0.04) (0.04) (0.04)

V8 0.93*** 0.92*** 0.92***
(0.07) (0.07) (0.07)

V9 1.09*** 1.08*** 1.08***
(0.05) (0.05) (0.05)

V10 0.56*** 0.54*** 0.54***
(0.08) (0.08) (0.08)

Implied Pricing by Ability and Income
∂p
∂b

-0.095 -0.105 -0.112 -0.066 -0.096
∂p
∂y

0.013 0.015 0.014 0.014 0.015

Reduced Form (OLS) Estimates of Pricing by Ability and Income
∂p
∂b

-0.113*** -0.112*** -0.121*** -0.063*** -0.052***
∂p
∂y

0.017*** 0.016*** 0.016*** 0.027 0.028

Note ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Columns 3 and 5 allow the consideration of minority status in pricing.
OLS estimates account for a cluster fixed effects
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Comparing the weighted estimates in Column 1 with the unweighted estimates in Column

2, we find only small differences in the estimated parameter values. The main difference is

that the unweighted estimator yields a somewhat greater point estimate of α.

In Column 3 we add minority to our model. We can estimate the ratio of κ
ω

. Our point

estimate is 0.012 with a standard error of 0.003. Recall that this ratio is primarily identified

off the observed aid to minority students holding income and ability fixed. The average

predicted marginal effect of minority in our model is a $900 discount. We conclude that our

model provides strong evidence that private schools care about racial diversity.

Our parameter estimates are reasonably robust across subsamples. To show this we also

estimated our model for the subsample that consistent of students that attended colleges

that seem to engage in the largest amount of pricing by income which are clusters 1 and 2.

The results are reported in columns 4 and 5 of Table 6. We obtain an estimate of α that

is equal to 76.89. Moreover our estimate of γ
ω

is marginally smaller at 0.046, though the

two are not significantly different. The inclusion of minority status also has little impact on

the first two parameter estimates, and the minority marginal cost parameter is statistically

significant for the main sample.

Table 7: Predicted Mark-ups and Pricing by Income, Ability, and Minority Status

(1) (2) (3) (4) (5)
markup 13.16 13.22 5.30 4.11 4.05
ability -1.80 -0.92 -1.11 -1.12 -0.94
income 0.35 0.31 0.21 0.25 0.26
minority status -5.75 -3.08 -4.23 -1.60 -0.58

(6) (7) (8) (9) (10)
markup 2.66 3.09 2.86 0.75 2.77
ability -1.06 -1.06 -1.14 -1.09 -1.96
income 0.47 0.37 0.42 0.51 0.28
minority status -0.51 -0.50 -0.33 -0.27 -0.11
Note: Markups include pricing by minority status.
Figures (in $1,000) calculated using full sample, not
just those observed to receive aid.

To gain some additional insights into the predicted magnitude of pricing by income and
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ability as well as the extent of market power, it useful to decompose the prices paid by

students into the different components. Using (33), for students not at the price cap, the

marginal effect of ability on price is approximately given by:

∂psj(m, b, y)

∂b
≈ − (1− rsj)α

1 + (1− rsj)α
γIj
ωθj

(45)

The marginal effect of income on price is approximately:

∂psj(m, b, y)

∂y
≈ 1

1 + (1− rjs)α
(46)

Finally, the mark-up is the difference between price and effective marginal cost:

mark-upj(s,m, b, y) = psj(m, b, y) − EMCj(m, b). (47)

To measure the market power of private colleges, we compute the average tuition mark-ups

over marginal cost along the quality hierarchy.

Table 7 shows the value of the average mark-up and pricing by ability and income terms

for each cluster. While mark-ups at lower quality colleges are relatively modest, markups rise

rapidly along the quality hierarchy, ranging above $13,000 for elite colleges. Our estimates

imply little difference in average pricing by income. The average effects range between 0.021

and 0.051 among the 10 clusters. However, our estimates imply much more variation in

pricing by ability and mark-ups. Average pricing by ability ranges between -0.092 to -0.196.

The largest discounts for minority status occur at the four highest ability schools, with

discounts ranging from $1,600 to $5,750. Overall average markups range between 3.5% and

35.5%. We thus conclude that the most selective colleges have significant market power.

There is also much price discrimination within colleges. To illustrate the magnitude of

these effects, we focus on Clusters 1 and 2, which include the most selective colleges. Table

8 reports predicted mark-ups over effective marginal cost by income and ability for white

students at these colleges.
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Table 8: Predicted Markups at Quintile Medians
Cluster 1

ability\income 0%-20% 20%-40% 40%-60% 60%-80% 80%-100%
0%-20% - 0.25 0.66 1.17 9.40
20%-40% - 0.27 0.68 1.19 9.47
40%-60% - 0.28 0.70 1.21 10.12
60%-80% - 0.29 0.71 1.28 11.59
80%-100% 0.00 0.32 0.74 1.24 19.47

Cluster 2
ability\income 0%-20% 20%-40% 40%-60% 60%-80% 80%-100%
0%-20% - 0.27 0.69 1.19 26.20
20%-40% - 0.27 0.70 1.20 26.64
40%-60% - 0.28 0.70 1.20 21.14
60%-80% - 0.28 0.71 1.22 16.64
80%-100% 0.00 0.30 0.72 1.22 9.63
Separate quintiles generated for each school, omitting legacy students.

Figures in $1,000. Predicted prices are capped.

Mark-ups range from $0 to $19,470 at Cluster 1 and from $0 to $26,640 at Cluster 2.

Using (30), it is straightforward to show that mark-ups are increasing in market share and

income and decreasing in EMC. The latter implies that decreases in EMC are only partially

passed along in the form of lower tuition for the student. The relatively small mark-ups

in both clusters for income types below the 80th percentile are a result of small market

shares and limited incomes. Mark-ups for the highest income types are much higher and

vary substantially with ability and between the two clusters. As seen in Table 3, instruc-

tional expenditure per student is much higher in Cluster 1 than 2 (i.e., $37,960 and $17,300

respectively), the implied higher EMC in Cluster 1 explaining the generally lower mark-ups

among high income students there.23 Effective marginal cost also declines much more steeply

with ability in Cluster 1, again due to higher instructional expenditure (see equation (31)).

Keeping in mind the property that mark-ups decrease with EMC, this explains the oppo-

site gradients in mark-ups as ability increases in the two clusters among the highest income

23A lower mark-up does not imply a lower net tuition, though average tuition is in fact lower in Cluster 1
than in Cluster 2 (see Table 3). Colleges in Cluster 1 likely have greater endowments, part of which is used
to provide more financial aid.
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types.

Table 9: Parameter Estimates II

(1) (2) (3)
ω 0.0369*** 0.0293*** 0.0154

(0.008) (0.008) (0.0124)
Implied by ω Estimate

γ 0.0027 0.0021 0.0012
κ 0.0002
R2 0.6328 0.5026 0.1054
Weights? No Yes Yes
Note: Column 3 accounts for minority status.

We then implement the last two stages of our estimator to obtain the point estimates for

γ, κ, and ω. We find that our estimates for ω range between 0.015 and 0.037.

Table 10: Average Tuition by Income and Ability, Private College Students
Predicted Actual

b1 b2 b3 b4 b5 b1 b2 b3 b4 b5

y1 13.62 12.93 13.10 12.83 12.59 y1 15.48 15.66 16.71 16.25 17.35
y2 14.47 13.91 14.05 13.50 12.66 y2 15.91 16.82 17.38 17.14 17.87
y3 15.70 15.68 14.60 14.60 15.24 y3 18.10 17.60 17.24 15.29 23.63
y4 15.88 16.41 15.42 16.56 18.17 y4 17.34 20.12 20.43 20.24 21.74
y5 18.84 19.86 20.27 20.43 22.29 y5 22.67 22.36 25.39 25.37 29.18

Figures in $1,000.

Finally we performed goodness of fit analyses. Given the focus of the paper, we provide

evidence on the fit of the pricing equation for students in private colleges. We focus on tuition

in private colleges because we take in-state and out-of-state tuitions of public colleges as given

by state government policy. Of course, these public college tuitions affect private tuitions.

Table 10 compares predicted and actual prices by income and ability for all students at private

colleges. This table was created as follows. Using the actual data, we divided students by

income to create five quintiles of equal size, with boundaries 0, y1, ...y5. Similarly, we created

five quintiles of ability of equal size with boundaries 0, b1, ...b5. Using the resulting income

and ability boundaries, we created the cross-tabulations in Table 10 with mean tuition of the
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relevant students in each cell. We see that the pattern of predicted tuitions follows broadly

the same pattern as that for actual tuitions. Table 11 is similarly constructed using data for

the subset of private school students who received aid. The patterns of predicted and actual

tuitions in Table 11 match up well. Thus, the tables demonstrate that our model is indeed

capturing key features of pricing by income and ability.

Table 11: Average Tuition by Income and Ability, Private College Aid Receivers
Predicted Actual

b1 b2 b3 b4 b5 b1 b2 b3 b4 b5

y1 13.65 12.78 13.04 13.04 12.63 y1 12.41 13.84 13.88 12.42 9.71
y2 14.28 13.63 13.94 13.09 12.53 y2 13.23 13.49 13.89 12.60 8.90
y3 15.43 15.04 14.27 14.84 13.70 y3 14.87 13.48 14.50 12.73 10.95
y4 15.51 15.51 15.21 15.66 15.88 y4 13.57 15.31 16.31 14.57 12.22
y5 18.84 19.12 19.11 18.54 20.12 y5 19.97 19.05 21.77 19.15 20.86

Figures in $1,000.

6 Conclusions

We have developed a new equilibrium model of private and public school competition that

captures the key institutional features of the U.S. market of higher education. We have shown

that the model can generate realistic demand and pricing patterns for private universities.

We have developed and implemented a new semi-parametric estimator for the parameters

of this model using data from the NPSAS. We obtain reasonable estimates for all of the key

parameters. Moreover, the model fits the data well.

Our empirical findings suggest that the majority of private colleges in the U.S. engage in

pricing by income, ability, and minority status. A $10,000 increase in family income increases

tuition at private schools by an average of $210 to $510. A one standard deviation increase in

ability decreases tuition by approximately $940 to $1,960 depending on the selectivity of the

college. There are large and substantial discounts for minority students which range between

approximately $110 (at historically black colleges) and $5,750 dollars. Average mark-ups are

modest, ranging between 3.5 and 33.5 percent, but are very large for high income students.
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There is much more heterogeneity in mark-ups within colleges than among colleges. Our

analysis suggests that highly selective colleges have significant market power, especially for

high income, high ability, non-minority students.

We view the results of this paper as promising for future research. One might modify the

objectives of state and private colleges or consider the presence of more providers of higher

education with other objectives. We have implicitly assumed in our empirical analysis that

colleges within a cluster are colluding, i.e. setting the same price, admission and expenditure

policies. In practice, there are small differences among the colleges within a cluster and

colleges may engage in some limited competition for students.
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A Construction of the Ability Measure and Ability

Thresholds

We measure ability by predicting students’ first-semester GPA as a function of their high

school GPA, ACT score (or SAT score converted to ACT score), gender, major, and college

choice.

The predicted GPA for student i at school j in discipline d is given by:

GPAijd = β0 +β1HSGPAi+β2ACTi+β3HSGPAi∗ACTi+β4femalei+βj+βd+εijd (48)

where βj represents a college fixed effect and βd represents a major fixed effect (12 majors,

humanities omitted). Using a sample of approximately 5,000 white students at 4-year public

or private universities, we obtain the following prediction (for a generic discipline at a generic

school as these fixed effects and the intercept are dropped):

ĜPAi = −3.184HSGPAi +−2.559ACTi + 0.918HSGPAi ∗ ACTi + 21.961femalei (49)

The R2 for the estimated model (including fixed effects) is 0.9342. After clustering, we then

standardize the ability measure to have standard deviation 1 and mean 0.415, such that all

schools have θj ≥ 0.

There are no explicit ability admission thresholds in the data. We estimate these thresh-

olds using all students except a small number of “legacy students” at some of the most

selective universities.24 We construct these by taking the first percentile predicted GPA at

any public college with at least ten non-minority students (as our model implies different

admission thresholds for minority students), and applying the minimum within cluster as the

cluster admission threshold. Any students below this threshold presumably have characteris-

24Legacy students are believed to contribute additional value to the school (perhaps through alumni
donations), and thus are subject to different admission criteria. Due to this unobserved characteristic, they
have a lower net marginal cost for the school and may be admitted despite lower ability. Legacy students are
identified off the empirical CDF of ability within a school–they precede the lowest flat region in the CDF.
In support of our hypothesis, such students tend to be non-minority students with high family income.
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tics desirable to a college, and so these students are “bumped up”to the threshold predicted

GPA. This new measure is used in admission and tuition estimation for all colleges.

We considered other approaches to construct these admission thresholds, and found that

the main results reported in this paper are not sensitive to the specifics discussed above.

B Nonparametric Estimation of Tuition Functions

For private colleges, we use a local polynomial smoothing estimator to estimate the tuition

function. The polynomial constructs a non-parametric estimate of tuition based on ability

and income, and interpolates only where the observed data span. That is, if we observe an

individual with a similar ability and income attending the college with a given tuition, the

LOESS estimator calculates a polynomial relationship among tuition, ability, and income

within the relevant bandwidth and predicts tuition locally. However, the resulting admission

set–where a tuition can be predicted–is really a combination of admission and matriculation.

Thus, many lower quality colleges would appear to reject high-quality applicants, because

no such applicants are observed at the college. Hence we assume that if a college accepts an

individual with ability bmin, it accepts all individuals where bi ≥ bmin. Then, we extrapolate

the local polynomial to such individuals to ensure all admitted individuals have a valid

first-stage tuition offer.
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