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Abstract

Under the expected utility paradigm, prudence (u000 > 0) is usually associated with
the amount of risk premium an individual requires in order to renounce to a certain
current outcome in favour of an uncertain future outcome. A prudent individual
requires a higher premium the lower her initial wealth. However, when the individual
has to make a costly investment before obtaining the outcome, she may prefer to delay
that investment. This translates into a preference for latter, not earlier outcome.
Consequently, prudence cannot be associated with a risk premium. In this paper
we show that, for an individual who prefers to delay the investment, prudence is
actually associated with the economic bene�t granted by that delay. Speci�cally, a
lower expected unit cost of acquiring the good is associated with a greater bene�t
of the investment delay if and only if u000 is high, and, with a uniform distribution,
u000 > 0. We also show that the preference for facing a lower expected unit cost and/or
a wider support of the unit cost increases with u000. We describe two applications of this
result, namely, sequential learning in the delegation of a task and timing of investment
decisions under multi-period uncertainty.
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1 Introduction

Since Leland [9] and Sandmo [12] analyzed the precautionary savings behavior of in-

dividuals, it has become well known that risk aversion is insu¢ cient to explain individual

preferences over future outcomes when the latter are uncertain. The reason is that the

notion of risk aversion refers to contemporary risk rather than to future risk. The authors

show that an individual engages in precautionary savings today as a response to increased

uncertainty about the future, if and only if the third derivative of her utility function is

positive. The underlying concept is that of prudence, as de�ned by Kimball [13], which is

related to, but distinct from, risk aversion. Broadly speaking, an individual is prudent if

higher uncertainty about future outcomes induces her to pay a higher cost today (say, to

reduce more her current consumption), provided that this allows her to decrease the risk

associated with future outcomes.

Prudence has also been shown to be equivalent to aversion against downside risk (Menezes

et al. [11]). It is useful to recall two interpretations of this result, which can be identi�ed

being based on the literature. First, a prudent individual requires a lower risk premium to

accept facing an unknown future outcome, in place of the current one, if her initial wealth is

raised (Hanson and Menezes [7]). Indeed, taking E [e"] = 0, the di¤erence u (x)�E [u (x+ e")]
decreases with x if and only if the third derivative of the utility function is positive. The

reason is that the support of unknown consumption is shifted upwards if the initial wealth

is higher. Second, as Menezes et al. [11] show themselves, when a prudent individual must

choose between two lotteries over consumption levels, rather than between a certain outcome

and an uncertain one, she will prefer a lottery in which some amount of risk is added to

a better state of nature (like higher consumption level) to a lottery in which that same

amount of risk is added to a worse state of nature. More recent papers, in which prudence

is de�ned as a preference over lotteries, are Bigelow and Menezes [1] and Eeckhoudt and

Schlesinger [6]. Also according to this interpretation, when the individual is called upon to

choose between a certain outcome today and an unknown outcome tomorrow, prudence is

viewed as a measure of the extent to which the risk premium varies with the initial wealth,

as in Hanson and Menezes [7].

What about an investor who has a strict preference for a future outcome over the current

one once she has decided to invest? In theory, the utility function u (�) of an investor
is represented in the same manner as that of a consumer, except that the argument of

the utility function is the amount of money spent/gained by the investor, rather than the

quantity of a consumption good. This representation traces back to the Bernoulli and

Cramer�s conjecture that the investor derives a certain utility from money and obviously

cares about that utility, rather than about money per se1. Hence, the investor will not be

available to accept the unknown outcome unless she obtains a risk premium and, if she is

1See for instance Levy [10], page 25
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prudent, the premium required will be greater the more uncertain that the future outcome

is. Of course, the investor will prefer the future outcome to the current one, if and only if

the net return thereof obtained exceeds the required risk premium, i.e. the downside risk is

su¢ ciently low.

An essential characteristics of many investments is their irreversibility. This charac-

teristics seems to be ignored in the representation of the investor�s preferences previously

described, as the investor may well face a higher downside risk from early consumption

rather than from late consumption. As is well known from the literature on investment

under uncertainty (Dixit and Pindyck [5]), the investor might have a strict preference for

delaying an investment that is irreversible in nature and, hence, for delaying the outcome

associated with that investment. Indeed, by doing so, she can acquire additional informa-

tion, which will be useful to decide how much to invest. In such situations prudence cannot

be related to the risk premium required by the individual, since the investor has a strict

preference for the future outcome over the current one. In this paper, we show that, in

such situations, prudence is actually related to the bene�t drawn from the investment delay,

which we will call the "�exibility gain," as in Dixit and Pindyck [5]. Intuitively, prudence is

related to the �exibility gain because a delay in investment leads to a reduction in downside

risk. Indeed, by not engaging in an irreversible investment today, the investor maintains the

possibility of investing less tomorrow, if an unfavorable state of nature is realized.

As an illustration, take an individual who draws a utility of u (y)��y from the immediate
investment in a capacity of size y, where � is the expected cost of acquiring a capacity unit

and the true cost is � + e�, where e� 2 f��; �g with equal probabilities. Noticeably, the
net utility is separable in the satisfaction derived from using y and the cost of �y that the

purchase occasions. In this way the optimal choice of y is endogenous and depends on the

technology of production (represented by � and � + e�). Moreover, whereas we refer to y
as to "capacity", y may well represent the decision variable in many other situations in

which the decision is irreversible. The examples we have in mind include the delegation of

a task with unknown cost of production in the contracting stage, and the regulation of a

monopolist when the consumer surplus is known but the cost of production is unknown. We

show that the individual prefers to delay her decision until after she will have observed the

realization of � + e�; hence she has a �exibility gain. We �nd that a greater �exibility gain
for the individual is associated with a lower value of � if and only if u000 is positive. This

is explained by the preference for less downside risk, as in Menezes et al. [11], with the

caveat that here less downside risk re�ects a greater �exibility gain rather than a lower risk

premium.

In the development, we consider a somewhat more general utility function, namely

u (� (y)) � (� + e�) y, where � (y) is the pro�t obtained by using a capacity of y; and e�
is distributed on a continuous range of values. However, the link between �exibility gain

and prudence follows the same principle as in the previous example.
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Looking next at the preference over di¤erent distributions of optimal capacities, we

consider cost functions of the form �i + e�j, where each distribution ij depends on the mean
and the spread parameters. We show that the higher that u000 is, the more that distributions

with lower �i and/or more dispersed e�j are preferable to other distributions. Hence, the
shape of the marginal utility of capacity provides a measure of how much the individual is

available to pay to be able to use a better technology, such as a technology with a lower

expected cost of acquisition. Remarkably, this result depends �nely on the fact that the

distributions ij and i0j0 di¤er in terms of the support of the states of nature, i.e. some state

of nature has a positive likelihood in some distribution and zero likelihood in some other

distribution. In the literature, the most common way of expressing a preference for a certain

distribution is to consider some stochastic ordering of distributions, among which �rst order

stochastic dominance and mean preserving spread are most common. The support of states

of nature does not necessarily di¤er across distributions. When the support is the same

the distributions only di¤er in terms of the probabilities associated with the possible states,

which are always positive. However, in that case, the magnitude of u000 does not necessarily

have bite on the individual preference for some speci�c distribution.

As the �nal step of the analysis, we provide examples of applications to sequential learn-

ing in principal-agent models and to investment timing decisions when the uncertainty about

the future lasts over an in�nite number of periods.

The paper is �rst related to the studies, within the literature on Decision theory, in which

prudence is de�ned as an averse attitude to downside risk (Menezes et al. [11], Bigelow

and Menezes [1] and Eeckhoudt and Schlesinger [6]). We contribute to this literature by

showing that, in addition to being associated with a type of preference over simple lotteries,

prudence is also associated with a type of preference over di¤erent moments in time when

an investment could take place.

The paper is further related to the literature on investment timing decisions under un-

certainty (Dixit and Pindyck [5]). In this literature, the investor is usually assumed to be

neutral to risk. An exception is the study of Henderson and Hobson [8]. Not surprisingly,

they �nd that a risk averse investor invests less often under uncertainty than does a risk

neutral investor. Hitherto no study has shown how an investment timing decision is a¤ected

by the fact that the individual is prudent. To make the point, we consider a setting in which

uncertainty is resolved after one period, as is usual in Decision theory. In the application to

investment timing decision under continuous uncertainty, we rely on a speci�c example to

show that not only risk aversion but also prudence induces the investor to invest less often.

The outline of the paper is as follows. In Section 2 we analyze the link between prudence

and �exibility gain to the individual in a two-period model. In Section 3 we describe

applications in delegation, price discrimination and timing of investment decisions. Section

4 brie�y concludes.
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2 Prudence and �exibility gain

Consider an individual whose utility has the functional form u (� (y))� (� + e�) y, where
y is referred to as a capacity of production, � (y) as the pro�t obtained with a capacity of

y; and (� + e�) y is the irreversible cost incurred to acquire y capacity units, where � > 0,

E [e�] = 0, e� 2 [��; �] with cumulative distribution function G (e�), for some � > 0 and �nite,
and with frequency g (e�) positive everywhere. We take � to be �nite in order to ensure
that the support of cost values varies with � and �, which is essential for our investigation.

The function u (�) has derivatives u0 > 0 and u00 < 0; moreover, u000 has a constant sign.

Because the cost of acquisition is sunk once the investment is made, the capacity decision is

irreversible. The choice of a utility function which is quasilinear in the cost of investment
is made for expositional purposes, as it will become clear in a moment.

There are two decisions that the individual will have to make. First, whether to invest

today or delay that decision. The advantage of delaying the investment decision resides in

that, whereas in the current period only the expected value of �+e� is known, the information
about e� will become available in the next period. Second, the individual will decide how
many capacity units to acquire. The number of units is pinned down by the �rst order

condition u0 (� (y))�0 (y) = x, where either x = � or x = � + e�, depending on whether
the investment is made immediately or it is delayed. It is optimal to delay the investment

decision until the next period, when e� will be known, if and only if w (�; �) > 0, where
w (�; �) = E [u (� (y (� + e�)))� (� + e�) y (� + e�)]� (u (� (y (�)))� �y (�))

When w (�; �) > 0, the investor obtains a �exibility gain from delaying the investment from

the �rst period, when e� is unknown, to the next period, when its value will be realized.
Before analyzing the �exibility gain, we recall the notion of prudence. We know that

an individual is prudent if and only if u000 (y) > 0, for any y exogenously given. Applying

Jensen inequality, this is equivalent to E [u0 (y + e")] � u0 (y) ; for some random e" such that
E [e"] = 0. Using this equivalence, prudence is usually associated with the risk premium which
the individual requires to be available to accept the unknown outcome. Indeed, supposing

that the future capacity is y+e" and that it is exogenously given to the individual at no cost,
she is prudent when v0 (y) < 0, where

v (y) = E [u (y + e")]� u (y)

and �v (y) is her risk premium (see, for instance, Eeckhoudt and Schlesinger [6]). A prudent
individual asks for a lower risk premium �v (y) as y is raised. If the support of e" is �nite,
then we can say that the reason why she asks for a lower risk premium is that the support

of the unknown values y + e" shifts upwards and the downside risk is thus reduced. If the
individual has to pay for that capacity and her utility is quasi-linear in the cost occasioned
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by that purchase, then the risk premium is �v1 (y), where

v1 (y) = E [u (y + e")]� u (y)� fE [(� + e") (y + e")]� �yg :

Because E [(� + e") (y + e")]� �y = E �e"2�, the risk premium is positive and even higher than
in the previous case, if e" has a positive variance.
Let us now turn to consider our setting, where y (�) is endogenous. Using the following

result, it is easy to deduce that the decision maker is very likely to obtain a �exibility gain

if she delays her investment decision.

Lemma 1 The �exibility gain is expressed as follows:

w (�; �) =

Z �

���
[y (x) g (x)� y (x+ �) g (x+ �)] dx (1)

Proof. Considering that the optimal capacity is such that u0 (� (y (x)))�0 (y (x)) = x, 8x,
rewrite

w (�; �) = [E [u (� (y (� + e�)))]� (� + e�) y]� [u (� (y (�)))� �y]

= E
Z �+e�
�

[u0 (� (y (x)))�0 (y (x))� xy0 (x)� y (x)] dx

= �E
Z �+e�
�

y (x) g (x) dx;

which is further rewritten as (1).

We observe, for instance, that the individual obtains a �exibility gain from a delay in the

investment either if e� can take only two values, as in the example presented in Introduction,
or if it takes values on the range [��; �] according to a symmetric distribution. More

generally, there exists a �exibility gain if the rate of change of y (x) is lower than that of

the likelihood g (x), namely if y0 (x) =y (x) < g0 (x) =g (x). In particular, because y (x) is a

decreasing function for a risk averse individual, this condition is satis�ed if the cumulative

distribution function G (x) is convex.

The possible existence of a �exibility gain (w (�; �) > 0) is explained by the irreversible

nature of the investment decision. By committing today to a capacity of y (�) ; the individual

renounces to the opportunity of purchasing only y (� + �) < y (�) capacity units tomorrow, if

she �nds out that the cost of procuring capacity is high (�+� > �). Therefore, E [y (� + e�)] >
y (�) and such that the individual bears more risk if she commits to a capacity choice today,

rather than delaying the decision. Instead, if she were to choose between some exogenous

capacity of y today and y +e" tomorrow, where E [e"] = 0, then there would be no �exibility
gain and, as usual, the risk premium would be positive.

In good substance, the downside risk is reduced when the investment (and, implicitly,

the consumption) is delayed rather than being made immediately. We shall now show that
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the �exibility gain is greater when the unit cost of capacity is smaller if and only if the third

derivative of the utility function is high. To do so, we introduce the following de�nition:

� (a; b; c) = [f (a)� f (a+ c)]� [f (b)� f (b+ c)] ; (2)

where f (�) is the inverse function of u0 (�).
Being based on the following lemma, we can next use � (a; b; c) as a measure of the

concavity/convexity of the marginal utility function.

Lemma 2 � (a; b; c) > 0 if and only if u000 > 0, 8a; b; c such that a < c and b > 0.

Proof. One has � (a; b; c) > 0 if and only if

[f (a)� f (a+ c)] > [f (b)� f (b+ c)]

,Z a+c

a

f 0 (x)� f 0 (x+ b� a) dx < 0

Provided u000 has a constant sign, this is also the case of f 0 (�), and the above condition
holds if and only if f 0 (x) < f 0 (x+ b� a) ; for any given x 2 [a; a+ c]. This is equivalent

to u00 (y (x)) > u00 (y (x+ b� a)). Because b > a and u00 < 0, y (x) > y (x+ b� a). Hence,

u00 (y (x)) > u00 (y (x+ b� a)) is equivalent to u000 > 0.

We are now ready to show that the degree of �exibility, which the individual enjoys if

she delays the investment decision, is related to her prudence.

Proposition 1 dw(�;�)
d�

< 0 if and only if

� (� � �; �; �) �  (�; �) , (3)

where

 (�; �) � y (� � �)
g (�)� g (� � �)

g (�)
� y (� + �)

g (� + �)� g (�)

g (�)

Proof. Using (1),

dw (�; �)

d�
=

d

d�

Z �

���
[y (x) g (x)� y (x+ �) g (x+ �)] dx

= [y (�) g (�)� y (� + �) g (� + �)]� [y (� � �) g (� � �)� y (�) g (�)]

= g (�) [�� (� � �; �; �) +  (�; �)] ;

and the result follows.

The lower that the expected unit cost is the higher that the optimal value of y (� + e�) is,
for each realization of e�. In this case, rather than mirroring a lower risk premium required by
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the individual, a high level of u000 (which determines a high value of � (� � �; �; �)), mirrors

a greater �exibility gain from delaying the capacity decision. Noticeably, the level of u000,

which separates the region where dw (�; �) =d� has a negative sign from that where its sign

is positive, is not necessarily zero. Therefore, one cannot use Proposition 1 to provide a

de�nition of prudence, which would be equivalent to u000 > 0. The reason is that not only

does the �exibility gain depend on the fact that the values of y (� + e�) are shifted upwards.
It also depends on how the frequency of each state y (� + e�) changes as the support of values
is shifted upwards. Hence, it depends on the characteristics of the distribution function g (e�).
In Introduction, we provided a simple example in which e� can only take two equally likely
values so that  (�; �) = 0. In that case, dw (�; �) =d� is negative if and only if the individual

is prudent. That example belongs to the category of uniform distributions captured by the

following remark.

Remark 1 Assume that g (�) is symmetric. Then,  (�; �) � 0, with  (�; �) = 0 if g (�) is
uniform.

It should thus be apparent that the notion of prudence has a broader interpretation

than usually considered in the literature. When the distribution of cost values is symmetric

around the mean the investor enjoys a �exibility gain from delaying the investment decision

if and only if she is prudent. The reason why the investor postpones her decision is that, by

delaying the investment, she faces a lower downside risk.2

Before concluding, we show that the link between the �exibility gain and the preferences

of the individual goes beyond the sole de�nition of prudence. Indeed, as we now turn

to highlight, the third derivative of the utility function provides a measure of how much

the individual is ready to pay to be faced with a cost distribution associated with a lower

expected cost �, or with a higher spread �, or with some combination of � and �, taking into

account that each of these two parameters contributes to the magnitude of the �exibility

gain the individual enjoys in her capacity decision.

Suppose that the unknown unit cost is �i + e�j, where i 2 f1; 2g and j 2 f1; 2g ; such
that �1 < �2 and �1 < �2. Further de�ne

Dij=i0j0 = E [Uij � Ui0j0 ] ;

where

Uij = u
�
y
�
�i + e�j��� ��i + e�j� y ��i + e�j� :

For instance, D1j=2j measures the additional gain that a technology associated with an

expected unit cost of �1 grants, relative to one associated with an expected unit cost of �2,

2Notice also that, unlike in the case of the expected unit cost, the in�uence of the spread of the cost on
the �exibility gain is unrelated to u000. For instance, if the distribution is uniform, then the option to delay
is more important the higher that the spread between future costs is and regardless of the characteristics of
the utility function (a standard result in the literature on investment under uncertainty).

8



for any given value �j of the spread. Suppose that some innovation is available at some cost

I > 0; which allows for the use of a technology �1+e�j rather than �2+e�j: Then, the higher
that D1j=2j is, the more likely that the individual will be ready to pay that cost to acquire

the innovation. According to the following result, the willingness to pay I is related to the

third derivative of the utility function.

Proposition 2 i) D1j=2j0 increases with u000, 8j � j0.

ii) Di2=i01 increases with u000, 8i � i0.

iii) D11=22 increases with u000 if and only if �2 � �1 > �2 � �1

Proof. Being based on the de�nition of Uij, we can compute

Dij=i0j0 = E [Uij � Ui0j0 ]

= �E
"Z �i0+e�j0

�i+e�j u0 (y (x)) y0 (x) dx

#
� E

��
�i + e�j� y ��i + e�j��

+E
��
�i0 + e�j0� y ��i0 + e�j0��

= �E
Z �i0+e�j0
�i+e�j xy0 (x) dx� E

��
�i + e�j� y ��i + e�j��+ E ���i0 + e�j0� y ��i0 + e�j0�� ;

which further reduces to

Dij=i0j0 = E
Z �i0+e�j0
�i+e�j y (x) dx: (4)

Proof of (i) and (ii). Using (4) and (2), we can further develop

D1j=2j = E
Z �2+e�j
�1+e�j y (x) dx

= E

"Z �1

�1+e�j y (x) dx+
Z �2

�1

y (x) dx+

Z �2+e�j
�2

y (x) dx

#

=
1

2

Z �1

�1��j
� (x; x+��; nj) dx+

Z �2

�1

y (x) dx;

where �� = �2 � �1: In the expression of D1j=2j the term that depends on u000 is � (�; �; �),
which is de�ned in (2)) and increases with u000. Also,

Di2=i1 = �E
�Z �i+e�2

�i+e�1 y (x) dx

�
=

1

2

�Z �i

�i��2
y (x) dx�

Z �i+�2

�i

y (x) dx

�
� 1
2

�Z �i

�i��1
y (x) dx�

Z �i+�1

�i

y (x) dx

�
=

1

2

Z �i

�i��2
� (x; x+��; �2) dx+

1

2

�Z �i+��

�i

y (x) dx�
Z �i+�1+��

�i+�1

y (x) dx

�
;

where �� = �2 � �1. Again, the term that depends on u000 is � (�; �; �) ; which increases with
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u000.

Rewriting

D1j=2j0 = D1j=2j +D2j=2j0 =

(
D1j=2j; if j0 = j;

D12=22 +D22=21; if j0 = 1 < j = 2

and

Di2=i01 = Di2=i1 +Di1=i01 =

(
Di2=i1, if i = i0,

D12=11 +D11=21, if i = 1 < i0 = 2
;

and considering that D1j=2j; 8j; and Di2=i1; 8i; increase with u000, we deduce that this is the
case of D1j=2j0 and Di2=i01 as well.

Proof of (iii). Using (4) and (2), we can compute

D11=22 = E
�Z �H+e�H

�L+e�L y (x) dx

�
=

1

2

Z �H��H

�L��L
� (x; x+ �L; x+ 2�L) dx+

Z �L+�����

�L

y (x) dx

If �� > ��, then D11=22 is positive and increases with � (�; �; �); if �� < ��; then it is

negative and decreases with � (�; �; �). Provided that � (�; �; �) increases with u000, the result
follows.

Therefore, how much an individual prefers being faced with a set
�
�i � �j; �i + �j

	
;

rather than with a set
�
�i0 � �j0 ; �i0 + �j0

	
; is related to u000. Remarkably, one cannot use

the usual notions of stochastic dominance to relate a preference over distributions to u000.

Indeed, it is easy to show that, if two distributions share the same support but are ordered

in the sense of �rst-order stochastic dominance, or in the sense of a mean preserving spread,

then the preference of the individual for one distribution is unrelated to u000.

3 Applications

We hereafter propose a few examples, in which the utility function of the decision maker

is given by u (y) � xy, where u (y) is a constant relative risk aversion function, de�ned as

follows:

u (y) =
1

1� 
y1�;

for some  2 (0; 1). Accordingly, we have u0 = y� > 0, u00 = �y��1 < 0 and u000 =

 ( + 1) y��2 > 0. Considering a utility function with these properties is convenient in

that it permits to look at variations in u000 through variations in : Indeed, one has

du000

d
= (2 + 1) y��2 +  ( + 1) y��2 ln y;
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which is strictly positive if the quantity y is above one. The second and the third derivatives

of u (�) are also the second and the third derivatives of u (y)� xy.

3.1 Delegation with unknown cost in the contracting stage

A principal who delegates the production activity to an agent obtains the gross utility

u (y) from consumption of the y units produced by the agent. By assigning a pro�t of

� = t (x; y)� xy to the agent, where t (x; y) is a transfer, the principal obtains a net utility

of u (y)� xy � �.

Take x0 = � to be known and x1 2 f� � �; � + �g with equal probabilities. From the

previous analysis, we know that, if � = 0, then the principal strictly prefers to condition

the production quantity on x1; rather than on x0, since, by doing so, she obtains a greater
�exibility gain. Moreover, according to Proposition 1, higher values of � are associated with

a smaller �exibility gain.

Suppose next that the principal can choose between an agent producing at a cost of

�1 + e�1 and an agent producing at a cost of �2 + e�2, where �1 < �2 and �1 < �2. We saw

that, if the principal can leave zero pro�t to the agent regardless of the latter�s cost, then

she prefers a cost of �1 + e�1 if and only if �� > ��. Moreover, the gain increases with u000.
Indeed, using u0 = � + e� and u0 = y�, we see that y (� + e�) = (� + e�)� 1

 and

D11=22 = E

Z �2+e�2
�1+e�1 x�

1
 dx

together with
dD11=22

d
=
1

2
E
Z �2+e�2
�1+e�1 x�

1
 ln (x) dx;

which is positive if the unit cost is above 1 in all states. Since du000=d > 0, we can say that

a greater value of u000 is associated with a greater value of D11=22, as in Proposition 2.

Why is this relevant? Suppose that the principal runs an auction to select the agent who

will accomplish the task. If she does not know which type of agent she is facing, then she will

obviously prefer to favour an agent of type �1+e�1, if that type exists. If the principal faces
one agent with two possible types, then the greater that u000 is the higher the information

rent that she will prefer to concede to type �1+e�1 to solve the usual trade-o¤ between rent
extraction and e¢ ciency loss. Indeed, denoting �1 and �2 the pro�ts designed for the two

types and setting �2 = 0, it is easy to verify that

�1 = ��E [y (�2 + e�2)]���E [y (�2 � �2)� y (�2 + �2)] :

Replacing y (� + e�) = (� + e�)� 1
 , this becomes

�1 = ��E
h
(�2 + e�2)� 1



i
���E

h
(�2 � �2)

� 1
 � y (�2 + �2)

� 1


i
:
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Then

d�1
d

=
1

22

h
(�� ���)

�
(�2 � �2)

� 1
 ln (�2 � �2)

�
+ (�� +��)

�
y (�2 + �2)

� 1
 ln (�2 + �2)

�i
> 0:

which con�rms that the principal prefers to assign a higher information rent the greater that

u000 is.34

Price discrimination with unknown preferences

The example presented above can be framed within the recent literature on principal-

agent problems with privately known distributions. Most of those studies are about price

discrimination in the relationship between a monopolist and a consumer, none of whom

knows the consumer�s valuation for the good in the contracting stage, whereas the consumer

has private information on the distribution of his valuation. The pioneering study is that

of Courty and Li [2]. They assume that the monopolist receives a �xed payment a at

the time when the consumer is uninformed of his valuation. This might be followed by a

reimbursement k, which the consumer can require in a later stage, after learning his true

valuation. Of course, the consumer will want to be reimbursed, and will thus renounce to

consume, if and only if k exceeds his valuation. If the consumer does not renounce, then

the monopolist will bear a cost of c to provide the service.

Essentially, in Courty and Li [2], the economic issue is how to choose the future dis-

bursement k and the current revenue a; which is more in line with the classical savings-

consumption model than with the issue of our interest. However, because this problem

belongs to the kind of principal-agent models considered in the previous example, for the

sake of completeness, we show that u000 plays a role in the solution adopted by the principal

also in the problem of price discrimination with unknown preferences. To that end, we

restrict attention to the case of symmetric information between players.

Whereas Courty and Li [2] and more recent studies assume that the monopolist is risk

neutral, we consider a risk averse monopolist, whose utility u (�) is expressed as a function
3Although little apparent from our presentation, there is also an additional aspect of the incentive

problem which is related to u000: That is, if both � and � are privately known to the agent, then a greater u000

will also re�ect the fact that adjacent incentive constraints are tighter than other incentive constraints. For
instance, reporting �1 + e�1 is more attractive to a type �1 + e�2 than reporting �2 + e�2. A complete analysis
is developed by Danau and Vinella [3], who show that the study of the optimal delegation in this context is
lengthy and complicated, unless it is related to u000.

4Remarkably, the results in the delegation example here proposed extend naturally to the regulation of
a monopolist. In that framework, u (�) would indicate consumer surplus; u0 (�) would measure the consumer
willingness to pay for the good sold by the monopolist and, hence, the (inverse) demand for the good. Vari-
ations in u000 would represent variations in the price elasticity of the market demand rather than variations
in the preferences of a risk averse decision maker. One would �nd that  = 1=", where " is the constant price
elasticity of the demand. Therefore, a greater value of u000 would be associated with a less elastic demand
and the results we presented in the example follow accordingly.
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of money, as de�ned above. The total bene�t of the monopolist is:

u (a)� vu (k)� (1� �)u (c) ;

where � is the probability of a high valuation, namely � > 0; (1� �) is the probability of

a low valuation, namely 0, and the reimbursement k is supposed to take values in (0; �)

at optimum. Under symmetric information, if the risk neutral consumer has zero outside

opportunity, then the monopolist chooses a �xed payment such that:

a (k) = (1� �) k + ��

The �rst-order condition of the maximization problem of the principal is given by:

u0 (kt + � (� � kt)) �
�

1� �
u0 (kt)

For a positive solution to exist, it is necessary and su¢ cient that the high valuation is

less likely than the low valuation: v < 1=2. Otherwise, the monopolist will choose a = ��

without conceding any reimbursement. Accordingly, we take � < 1=2: Then, k > 0 involving

that a (k) > ��. Replacing u0 (y) = y�, we obtain the following solution:

[k + � (� � k)]� =
v

1� v
k� , k� =

��
1�v
v

� 1
 � (1� �)

�;

which is lower than � and con�rms our previous hypothesis. We see that dk�=d > 0. Hence,

the greater that u000 is the higher the value k� that the solution takes. This is interpreted as

follows. The monopolist is more prone to grant a reimbursement to the consumer in a later

stage to be able to appropriate a higher certain payment a(k�) today.

3.2 Investment timing and prudence

We now consider an investment timing problem in which, unlike in the basic model

previously used, uncertainty lasts forever. Whereas in the two-period setting we found

that u000 is related to the magnitude of the �exibility gain the individual enjoys by delaying

the investment, in this example we show that, with in�nite uncertainty, u000 is related to

how much the individual prefers to delay the investment. As very common in real options

analysis, we take x to follow a Geometric Brownian Motion, such that

dxt = �xtdt+ �xtdzt; (5)

where zt is a simple Brownian Motion and � < r; with r the risk-adjusted discount rate.

Starting from an initial capacity of y, the individual must decide at which point in time she

will invest in a capacity increment, which would cost xt at time t. The individual invests

13



immediately if x0 < x�, for some x� to be determined; otherwise, she delays the investment

until the date T � > 0; de�ned as follows:

T � = inf ft � 0; s.t. xt = x�g :

This is the stochastic moment when x� is reached for the �rst time. For simplicity, we do

not allow for disinvestment. The optimal value x�; which triggers the investment, is de�ned

by the equation

u0 (y) =
�2

�2 � 1
x�;

where �2 is the negative root of the quadratic equation � (� � 1) �
2

2
+�� = r.5 Considering

that u0 (y) = y�, we can write

x� =
�2 � 1
�2

y�

and
dx�

d
= ��2 � 1

�2
y� ln y < 0

This suggests that the greater that u000 is the lower that x� will be. Hence, a greater u000 is

associated with a later investment.6

An observation is again in order. A greater u000 is not necessarily associated with a later

investment in any investment problem under uncertainty. This is or not the case depending

on the number of decisions to be made by the investor and on the degree of irreversibility

of each such decision. To see this, we now take u (�) to be the individual utility in one
single period and ex to represent a unit cost of operation rather than a cost of investment.
In this framework, the production quantity yt changes in each period according to the rule

u0 (yt) = xt, involving that y (xt) = x
�1=
t and

u (y (xt))� xty (xt) = �x��t ; where � � 

1� 
:

We see that
d�

d
=

1

(1� )2
> 0:

The expected discounted value of the project at time t is given by

Vt = �
x��t

r + �� � 1
2
�2� (� + 1)

;

5The steps to the identi�cation of the solution are standard and thus omitted. See, for instance, the basic
model of Dixit and Pindyck [5] presented in Chapter 5, Section 2. The example we provide is similar to their
model, except that here the stochastic variable is the unit cost of investment rather than the discounted
value of the project.

6Dixit [4] determines E [T �] analytically and shows that it is inversely related to x�.
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under the assumption that the denominator is positive.7 The investment trigger is given by

x��

r
�
+ �� 1

2
�2 (� + 1)

=
�2

�2 � 1
I:

Hence, one obtains

x��t =
�2

�2 � 1
I

�
r

�
+ �� 1

2
�2 (� + 1)

�
:

The derivatives of both the left-hand side and the right-hand side decrease with � and it is not

clear that the investment trigger is monotonic in �. This is because, unlike the investment

decision, the decision concerning the scale of operation is not irreversible. Therefore, as

compared to the example illustrated above, there is now an additional bene�t to investing

immediately, which might o¤set the bene�t associated with the investment delay.

4 Conclusion

We showed that the notion of prudence extends to situations the literature has not

considered so far. Speci�cally, provided that an individual prefers future outcomes to current

ones, the third derivative of the utility function (and, implicitly, prudence) is a measure of

that preference. An individual is likely to prefer future outcomes to current ones when the

attainment of the outcomes requires making an irreversible investment.

Relying on a simple model, we pinned down the equivalence between prudence and a

speci�c type of behavior, in the same vein as prudence is proven to be a speci�c preference

over simple lotteries in the previous literature. We showed that, in the setting we considered,

prudence is equivalent to a more pronounced preference for a �exibility gain the lower that

the expected unit cost is, if the individual�s utility is concave in consumption and the cost

of investment is linear.

We provided two examples of a preference pro�le with these features, which we drew

from two di¤erent domains of literature, without the ambition of being exhaustive. This

helped us illustrate that the notion of prudence can be employed along a novel research

direction.
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