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1. INTRODUCTION

In the public sector in many countries, service provision is allocated through competitive

bidding.1 Yet, at the time of tender, bidders as well as the government agency organizing

the auction may not be aware of specific needs and costs for future stages of the service.

Actual bids may reflect how bidders perceive this future risk around the project.

Contract adjustments has traditionally been more common in private procurement as

private firms are not bound by the same rules as the public sector in their procurement

strategies and decisions. However, even in the public sector, there are many examples

of contract adjustments. When the Norwegian Road Administration (Statens vegvesen)

renovates and upgrades its infrastructure it sometimes requires additional, complemen-

tary, work from its contractors. When in 2015 road works prevented water provision

to inhabitants living close to a construction site in northern Norway, a solution to this

problem had to be included in the contract. In 2013 when the authorities realized that

upgrading the ferry connections on one of the main roads on the west coast of Norway also

required the provision of a temporary solution during the work period, this was seen as a

“necessary consequence” of the initial contract and was added as a change order. Other

examples includes unexpected additional work during renovation2, extension of service

1We thank Antonio Miralles and Laurent Linnemer as well as seminar participants at Ume̊a University,

X-CREST, University of Konstanz and HEC Montréal for valuable comments. All errors are ours.
aNHH Norwegian School of Economics, malin.arve@nhh.no
bParis School of Economics-EHESS, david.martimort@parisschoolofeconomics.eu
1For instance in the EU, open procedures, meaning first-price or first-score auctions which are open

to any qualified bidder, constitute 73% of all tenders announced in the Official Journal (PWC (2011)).
2See KOFA case 2014/14 concerning renovation of a school in the municipality of Lenvik.
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contracts to other public institutions3 or the extension of a service provision to additional

market segments4. Some of these contract adjustments are already within the scope of

public procurement in Norway, and in the European Union more broadly. Other are not.

For instance the extension of the service contract to a new public institution mentioned

above, was considered an illegal direct procurement whereas the other examples were

deemed to be legal extensions of an initial public contract. An additional example of

such illegal extension of a public contract is the case of the port in Bodø in northern Nor-

way where an initial contract for the installation and initial maintenance of floating docks

was extended to also include protective breakwaters. However the new EU directives on

public procurement5 leave much more scope for contract adjustments in future public

contracts. In particular, Art. 72 of the 2014 Directive on public procurement makes

any contract adjustment below 10 % of the initial contract value for service and supply

contracts and below 15 % of the initial contract value for works contract admissible as

long as it does not change the overall nature of the contract.6 This change in the policy

on public procurement only adds to the multiple reasons why understanding the effects of

such contract adjustments on contracting and firm behavior is of paramount importance.

In this paper we consider a competitive procurement environment for a basic service

and a future, uncertain, and thus risky, add-on. We are interested in the effects of intro-

ducing risk aversion in this environment. We argue that even when contracts are allocated

competitively to the most efficient provider using a first-price sealed-bid auction, the pro-

curement agency can influence the cost of incentives via the payment structure. In fact,

by shifting more of the expected payoff to the risky period, the procurement agency makes

it less attractive for firms to exaggerate costs and the overall cost of procurement goes

down. This profit shifting becomes more important the higher the cost realization of the

basic service as higher costs influence the information rents of all lower cost realizations.

Furthermore, we show how by committing to a prespecified payment structure within

the contract, the procurement agency can indirectly control bidding strategies. We fully

characterize the increasing, symmetric equilibrium bidding strategy in a first-price auc-

tion and show that risk aversion has two effects. The first one is in line with the literature

on bidding behavior in auctions (see below) and states that risk-averse bidders bid more

aggressively to reduce the risk of loosing. The second effect is due to the inherent risk

within the contract. Accepting a risky contract requires a risk premium to be paid to a

risk averse contractor. This pushes up the required payment and leads to less aggressive

bidding.

3See KOFA case 2015/65 concerning the extension of a service provision contract for electronic doc-
umentation signed between the Norwegian Student Loan Administration and Maestro Soft AS to Inno-
vasjon Norge.

4See KOFA case 2015/10 on sewage services in municipality of Oppdal.
5These include directives on public procurement, utilities procurement and concessions.
6Article 72 also opens the door for contract adjustments in other cases.
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The empirical contracting literature has shown the importance of contract adjustments

and change orders. Bajari et al (2014) estimate the adaptation costs in paving projects

in California to be 8 to 14 percent of the winning bid. Jung et al (2016) show, using

construction date from Vermont, that markups are higher in auctions with renegotiated

tasks (and these tasks drive the higher markups). De Silva et al (2016) look at the

effect on project modification on bidders’ costs. In this paper we consider such contract

adjustments in an optimal contracting model, and ask how contract adjustments in the

form of an additional risky task affects bidding behavior and how the prinicpal should

react to this in designing the optimal contract.

This paper is close to a small literature on contract design under adverse selection and

risk aversion (Salanié (1990), Laffont and Rochet (1998) and Arve and Martimort (2016)).

We analyze a similar environment to Arve and Martimort (2016). However, the focus in

that paper is on the intensive margin and how risk aversion in a dynamic procurement

environment with uncertainty affects output. In this paper we focus on the extensive

margin. In fact, as opposed to Arve and Martimort (2016) we assume that both the basic

service and the future add-on is of fixed size and show how the effects identified in that

paper affect behavior in a competitive environment.

We also belong to a much larger literature on auctions with risk averse bidders. Holt

(1980), Riley and Samuelson (1981), Maskin and Riley (1984) and Matthews (1984)

compares standard auction formats under risk aversion and shows that the Revenue

Equivalence Theorem (Myerson (1981) and Riley and Samuelson (1981)) fails. More

recently the literature on risk aversion in auctions have analyzed the optimal reserve price

(Hu et al, 2010; Hu, 2011) and asymmetries between bidders (asymmetric valuations in

Menicucci (2003) and different risk attitudes in Maréchal and Morand (2011)). However,

all of these papers focus on risk aversion in environments without an underlying risk such

as the add-on in our model. By focusing on an environment with an uncertain component

we are closer to McAfee and McMillan (1986) who look at the optimal contract in an

environment where parts of the costs are unknown ex ante. However, they limit the

analysis to linear contracts and, more importantly, they look at the trade-off between ex

post screening and moral hazard in a static environment whereas we focus ad-ons and a

dynamic contract rather than cost uncertainty. We also only consider adverse selection.

Esö and White (2004) were probably the first to focus on ex post risk in an auction envi-

ronment. They show how bidders who exhibit decreasing absolute risk aversion (DARA)

engage in precautionary bidding and, in a common value environment, reduce their bid

by more than the corresponding risk premium. A similar bid reduction is present in our

independent private value setting, but is not always dominating. Furthermore, we focus

on the effects of the payment structure within the optimal contract, a component that is

not present in the static environment in Esö and White (2004).

The rest of the paper is organized as follows. The model is presented in Section 2.
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Contracting for the add-on and general incentive compatibility conditions are analyzed in

Section 3. The optimal contract for the basic service is characterized in Section 4. Section

5 deals with equilibrium bidding strategies for the initial contract and the associated

reserve price is derived and analyzed in Section 6. Proofs are relegated to an Appendix.

2. THE MODEL

We consider an environment with multiple firms competiting for the provision of fixed-

size services in a procurement context. A public agency (henceforth the principal) orga-

nizes a tender to contract with one of n + 1 firms for the provision of a service, which

we refer to as the basic service. This basic service is a durable component which has

to be provided over two periods. In the second-period, an add-on is also required. To

simplify the modeling of the demand side7, we assume that the size of these two com-

ponents is fixed. In the examples mentioned in the Introduction, this means that the

scope of the upgrade or renovation work is not up for discussion and the extension of

the procurement contract to new segments or additional work is also not of variable size.

Thus, the principal wants to procure only one unit of the basic service and one unit of the

add-on. Uncertainty around the add-on puts the firm’s returns at risk. We are interested

in the impact of this risk on bidding behavior and on the intertemporal structure of these

contracts.

Technology, contracts and information. The basic service generates a gross

surplus S1 in each period. The winning firm provides this service at a constant cost θ1.

The gross surplus from providing the add-on in the second period is S2 and the firm can

provide this add-on at a constant cost θ2.

The selection of the service provider is done using a first-price sealed-bid auction with

a reserve price. The principal then offers a contract, consisting of payment specifications

for the basic service over the two periods as a function of the winning firm’s cost (an-

nouncement) as well as a menu of prices for the add-on. The fixed payments for the

basic service are denoted by b(θ1) and b(θ1) + y(θ1) for periods 1 and 2 respectively. The

premium y(θ1) captures the possible non-stationarity of payments for this service. The

second-period payment for the add-on is denoted by p(θ1, θ2). The exact specifications

required for the add-on are not completely known ex ante by the contracting parties and

the principal therefore offers a menu of prices for this component, one for each state of

the world.

At the time of tender each firm i has private information on its cost θ1,i for providing the

basic service.8 These cost parameters are independently drawn from a common knowledge

and atomless cumulative distribution F (·) with an everywhere positive density f(·) whose

7In this sense we are complementary to our previous paper in that this paper focuses on the extensive
margin where the previous paper focused solely on the intensive margins.

8We will ignore the subscript i whenever possible.
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support is Θ1 = [θ1, θ1]. Following a standard assumption in the screening literature,9

the monotone hazard rate property holds:

Assumption 1 Monotone hazard rate property:

d

dθ1

(
F (θ1)

f(θ1)

)
≥ 0 for all θ1 ∈ Θ1.

Firms are also symmetric in terms of the distribution of their second-period costs. To

capture the idea that the add-on is not yet completely defined at the time of contracting,

we assume that its cost is uncertain at this stage. Ex ante, there is symmetric but

incomplete information on the cost parameter θ2. However, before producing the add-on,

the winning firm learns its own cost parameter θ2. To maintain a tractable analysis, we

consider the case where θ2 is drawn from a common knowledge distribution on the discrete

support Θ2 =
{
θ2, θ2

}
(where ∆θ2 = θ2 − θ2 > 0) with respective probabilities ν and

1− ν, where ν ∈ (0, 1). We will assume that the value of the add-on, S2, is large enough

to ensure that this add-on is always valuable even under asymmetric information.10

First- and second-period cost parameters are independently drawn and, more generally,

there is no technological linkage across periods. When deriving our results in this environ-

ment, any departure from the standard results well known in the case of risk neutrality

comes from the fact that firms are risk averse in the second period.

Preferences. Denoting by 1 − β and β the relative weights on the first and second

period respectively, the principal’s expected gains from dealing with a firm of type θ1

which wins the tender can be written as:

S1 − b(θ1)− βy(θ1) + βEθ2 (S2 − p(θ1, θ2)) .

Denoting by u1(θ1) = b(θ1) − θ1 the firm’s first-period profit from the basic service and

by U2(θ1, θ2) = p(θ1, θ2) − θ2 its second-period profit from the add-on, the principal’s

intertemporal payoff becomes:

(2.1) S1 − θ1 − u1(θ1)− βy(θ1) + βEθ2 (S2 − θ2 − U2(θ1, θ2)) .

This expression highlights the rent-efficiency trade-off that characterizes contracting un-

der informational asymmetries. The principal cares about the social value of the project

but would also like to minimize the share of that surplus that accrues to the firm subject

to its participation to the tender mechanism.

We assume that firms are risk averse with respect to the second-period uncertainty.

9Bagnoli and Bergstrom (2005).
10Typically second-period surplus should cover second-period virtual costs (Myerson, 1981), i.e., S2 >

θ2 + ν
1−ν∆θ2 gives a sufficient condition.
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Accordingly, we express the winning firm’s intertemporal payoff as:

(1− β)u1(θ1) + βEθ2 (v (u1(θ1) + y(θ1) + U2(θ1, θ2))) ,

where the firm’s Bernoulli utility function v(·) is increasing and concave, (v′ > 0, v′′ ≤ 0)

with the normalizations v(0) = 0 and v′(0) = 1.

We are interested in the consequences of introducing uncertainty on the cost of the add-

on. As can be seen from the winning firm’s intertemporal payoff above, we assume that

firms remain risk neutral w.r.t. first-period returns. However, studying how risk sharing

impact on incentives requires to move away from more standard models of procurement

and assume that firms are risk averse with respect to second-period returns. Our assump-

tion that risk aversion changes over time is related to the idea that risk aversion should

be viewed as a proxy for existing constraints that might limit the firm’s access to the

capital market when it raises outside funds to finance the necessary outlay investments

associated with the services it is to provide. That the firm remains risk neutral with

respect to the first-period returns thus captures the idea that returns on the basic service

are well-known and stable enough to limit these costs of outside finance.

We also assume that v(·) satisfies standard properties in the risk literature:11

Assumption 2 Decreasing (resp. constant) absolute risk aversion (DARA) (resp.

CARA):

d

dz

(
−v
′′(z)

v′(z)

)
< 0 (resp. = 0) ∀z.

The fact that the firm’s preferences satisfy DARA can easily be motivated when risk

aversion is viewed as a proxy for costly access to financial markets. Indeed, firms which

already benefit from an activity (the basic service) that generates stable returns that can

be used as pledgeable collateral also face less tight constraints and requirements on these

markets.

Following the approach we developed in Arve and Martimort (2016), let w(z, ε) be a

utility function defined over wealth z and risk levels ε ≥ 0 as:

(2.2) w(z, ε) ≡ νv(z + (1− ν)ε) + (1− ν)v(z − νε).

This function w(·) clearly inherits some important properties from the underlying utility

function v(·) as it is also increasing and concave in z. It is also decreasing in ε which

captures the fact that more background risk, represented by ε, reduces the firm’s expected

payoff. A last important property is that the cross derivative wzε is non-negative as v′′′ ≥ 0

and the firm exhibits prudent behavior when Assumption 2 holds. In other words, more

11Holt and Laury (2002).
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background risk increases the firm’s marginal value of income:12

wzε(z, ε) = ν(1− ν)(v′′(z + (1− ν)ε)− v′′(z − νε)) ≥ 0.

We also let ϕ(ζ, ε) be the wealth level that guarantees ζ utils to the firm when the risk

level is ε, i.e., ζ = w(ϕ(ζ, ε), ε). The function ϕ(·) is increasing in ζ and ε.13 Finally, we

complete our setup by defining the function H(·) as:

(2.3) H(z, ε) ≡ wzε(z, ε)−
wzz(z, ε)wε(z, ε)

wz(z, ε)
.

That H(·) is non-negative follows from Assumption 2.14 Importantly, dwz

dε
(ϕ(ζ, ε), ε) =

H(ϕ(ζ, ε), ε). Hence, the fact that H(·) remains non-negative means that the marginal

utility of income increases with ε if the firm’s utility is left unchanged by raising z. The

sign of this total derivative plays an important role in understanding agency distortions

because it shows how a change in second-period risk sharing impacts on the firm’s in-

tertemporal profits.

Example: CARA preferences. Suppose that v(·) is CARA. Given the normaliza-

tions v(0) = 0 and v′(0) = 1, v(z) = 1
τ
(1−exp(−τz)) and w(z, ε) = 1

τ
(1−exp(−τz)η(τ, ε))

where η(τ, ε) = νexp(−τ(1− ν)ε) + (1− ν)exp(τνε). Finally, H(z, ε) = 0 for all (z, ε).

Auction and Contract Design. The principal runs a first-price sealed-bid auction

and commits to a long-term contract that regulates the basic service and the add-on over

both periods.15 Because firms are all symmetric, we look for a symmetric equilibrium

bidding strategy b(θ) that determines a per-period price for the basic service as a function

of the firm’s announcement of its costs.

Although the selection of the service providing firm is done using an auction in which the

firms place bids on their required per-period payment for the contract, the principal can

still choose the payment structure that is offered to the winning firm at the ex ante stage.

Therefore, from the Revelation Principle (Myerson (1981), Baron and Besanko (1984),

Myerson (1986)), there is no loss of generality in restricting the analysis to incentive-

compatible direct revelation mechanisms. In this case, a mechanism, denoted by C,
stipulates payments for each period as a function of the firm’s report of its cost type for

the basic service (or, equivalently, from the firm’s equilibrium bid for the basic service)

as well as a menu of prices for the add-on. The latter can both be a function of the

announced cost for the basic service and the second-period announcement of the cost for

12The concept of prudence goes back to Leland (1968) and Sandmo (1970).
Experimental evidence (Deck and Schlesinger (2014), Noussair et al (2014)) is in line with this as-

sumption.
13We have ϕζ(ζ, ε) = 1

wz(ϕ(ζ,ε),ε)
> 0, and ϕε(ζ, ε) = −wε(ϕ(ζ,ε),ε)wz(ϕ(ζ,ε),ε)

> 0.
14See Arve and Martimort (2016)
15For a discussion of how our results extend to the case of incomplete contracts see Section 7.
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the add-on. Thus, a mechanism can be defined as C =
{
b(θ̂1), y(θ̂1), {p(θ̂1, θ̂2)}θ̂1∈Θ2

}
θ̂1∈Θ1

where θ̂1 is the firm’s announcements of its cost parameter for the basic service and θ̂2 the

firm’s announcements of its cost parameter for the add-on in the second period. These

reports are of course truthful in equilibrium.

Timing. The contracting game unfolds as follows:

1. Firms privately learn their individual cost parameters θ1,i for the basic service.

2. The principal announces the rules of the first-price auction. A reserve price as

well as prices for the basic service and the add-on phase are stipulated in C. We

normalize, without loss of generality, reservation payoffs for all parties to zero.

3. Firms announce their cost θ̂1i and the lowest-cost firm, mini θ̂1i, is awarded the

contract. In case of a tie among several bidders (a zero-probability event), the

winning firm is randomly selected with equal probabilities.

4. The winning firm learns the value of the cost of the add-on, θ2. The winning firm

then reports θ̂2 and provides the add-on at the price stipulated in the contract.

Complete Information Benchmark. As a first pass, suppose that the first-period

cost θ1i and the cost of the add-on θ2 are both common knowledge, but recall that at

the time of contracting the cost θ2 is not yet realized. The solution to the contracting

problem is obvious. First, because costs for the basic service are known and firms are

ex ante identical with respect to the cost of the add-on, the principal does not have to

run an auction to select the most appropriate provider of the services. She will simply

enter into a contract with the firm with the lowest cost of providing the basic service.

Second, because transferring risk to a risk averse firm is costly, the principal should keep

all risk associated with the add-on so as to perfectly ensure the firm against second-

period cost uncertainty. Third, the firm must keep the same marginal utility of income

in both periods so as to smooth the cost of subsidies over time. Given the normalization

v(0) = 0 and v′(0) = 1, this means that, for all realizations of its costs parameters, the

firm should make zero profit in each period. This normalization provides a convenient

benchmark that allows us to conclude that any non-stationarity in payments and profits

follows from asymmetric information.16 Lastly, the principal only has to cover actual

costs of providing the services. Payments are thus given by:17

bfb(θ1) = θ1, y
fb(θ1) = 0 and pfb(θ2) = θ2.

16Had the firm also had the same concave utility function in the first period, the same result would
hold. Profits would be zero in each period.

17The superscript fb stands for first-best and it indexes optimal variables in the complete information
benchmark.
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3. INCENTIVE COMPATIBILITY

Second-period incentive compatibility. For any first-period report θ̂1 that a win-

ning firm may have reported in the first period18, the requirement of incentive compatibil-

ity implies that the second-period report, which is truthful from the Revelation Principle,

should maximize the firm’s continuation payoff p(θ̂1, θ̂2)− θ2. Because the second-period

project is a fixed-size project and because it is always valuable, no quantity screening

can be used to help rent extraction in the second period. The winning firm will be paid

a fixed amount p(θ̂1) for the provision of the add-on.

The firm’s second-period profit is thus:

(3.1) U2(θ2) = p− θ2

Furthermore, because any non-zero expected profit could, by a simple redefinition of

payments, be incorporated into the second-period premium for the basic service, y(θ̂1),

there is no loss of generality in assuming that the firm makes zero expected profit on the

add-on. This means that the second-period price for the add-on covers the expected cost

and is thus indepedent of the first-period announcement.

(3.2) p(θ̂1) = E[θ2], ∀θ̂1 ∈ Θ1.

Second-period profits can thus be expressed as a random variable with zero mean:

(3.3) U2(θ2) = (1− ν)∆θ2 and U2(θ2) = −ν∆θ2.

In terms of our previous notation this implies

(3.4) ε = ∆θ2.

First-period incentive compatibility. Of course, the second-period risk impacts on

first-period incentives. Assuming that an increasing, symmetric bidding strategy b(·), the

probability that a firm who reports a first-period cost θ̂1 wins the auction is (1−F (θ̂1))n.

This together with equation (3.4) and our previous definition of payoffs in terms of w(·)
allow us to rewrite the requirement of incentive compatibility for a bidder with type θ1

as:

(3.5) U(θ1) = max
θ̂1∈Θ1

(1− F (θ̂1))n
(

(1− β)(b(θ̂1)− θ1) + βw(b(θ̂1)− θ1 + y(θ̂1),∆θ2)
)
.

Using our previous definition of per-period fixed payoff from the basic service as u1(θ1) =

18We omit the index i for simplicity.



10 M. ARVE AND D. MARTIMORT

b(θ1) − θ1 and U(θ1) = (1 − F (θ1))n ((1− β)u1(θ1) + βw(u1(θ1) + y(θ1),∆θ2)), we can

express the second-period profit, including the premium y(θ1), in terms of other variables

as:

(3.6) u1(θ1) + y(θ1) = ϕ

( U(θ1)
(1−F (θ1))n

− (1− β)u1(θ1)

β
,∆θ2

)
.

This condition tells us how the second-period profit u1(θ1) + y(θ1) on the basic service

should be modified to keep the second-period utility 1
β
(U(θ1) − (1 − β)u1(θ1)) constant

for a given second-period risk ∆θ2.

With this change of variables, any incentive-compatible allocation that can be achieved

by a first-price auction cum an agreement on the provision of the add-on is equivalent

to a pair (U(θ1), u1(θ1)) that stipulates an intertemporal rent and second-period fixed

profit. Equipped with this dual specification of such incentive-compatible allocations, we

can now present a lemma which provides necessary and sufficient conditions satisfied by

any such allocation.

Lemma 1 Necessary condition. Any incentive-compatible allocation (U(θ1), u1(θ1))

is such that U(θ1) is absolutely continuous in θ1 (and thus almost everywhere differen-

tiable) with at any point of differentiability:

(3.7)

U̇(θ1) = −(1−F (θ1))n

(
1− β + βwz

(
ϕ

( U(θ1)
(1−F (θ1))n

− (1− β)u1(θ1)

β
,∆θ2

)
,∆θ2

))
.

Sufficient condition. An allocation is incentive compatible if U(θ1) is absolutely

continuous, satisfies (3.7) at any point of differentiability and is convex.

To understand the envelope condition (3.7), it is useful to consider the benefits that

a firm with first-period cost θ1 gets when pretending to have a marginally higher cost

θ1+dθ1. Doing so means that it can produce the requested basic service at a slightly lower

cost and thus save an expected amount (1−F (θ1 +dθ1))ndθ1 ≈ (1−F (θ1))ndθ1. This gain

is evaluated at the margins 1−β for the first period and at β multiplied by the marginal

utility of income in the second period. This marginal utility itself depends on the second-

period profit for the basic service which roughly amounts to u1(θ1 + dθ1) + y(θ1 + dθ1) ≈
u1(θ1) + y1(θ1). It also depends on how much risk is borne by the firm for the provision

of the add-on. From second-period incentive compatibility, this amount of risk is fixed at

ε(θ1+dθ1) = ε(θ1) = ∆θ2. Putting these facts together, a firm with cost θ1 is not tempted

to mimic the behavior of a θ1 + dθ1 type if it receives an extra rent U(θ1)−U(θ1 + dθ1) ≈
−U̇(θ1)dθ1 worth (1− F (θ1))n (1− β + βwz(u1(θ1) + y(θ1),∆θ2)) dθ1. Simplifying yields

(3.7).
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The right-hand side of (3.7) shows the basic forces at play in the optimal contract. First,

the familiar distortion in screening environments requires a firm to get an information

rent to reveal this information. By exaggerating its first-period cost, the firm can get an

extra benefit in case it is selected even if it is selected less often. The marginal benefit

of exaggerating the costs in the first period is thus integrated by the probability that the

firm still wins the tender.

However, as in Arve and Martimort (2016) there are two other, less familiar, effects.

Indeed, among all intertemporal profiles of profits (u1(θ1), u1(θ1) + y(θ1)) that leaves the

overall rent U(θ1) of a given type θ1 unchanged, the principal benefits from shifting more

of these profits towards the second period. Reducing the second-period marginal utility

diminishes the slope U̇(θ1) and the principal again saves on the rents and payments for

all inframarginal types below θ1.

Lastly, and still stemming from the concavity of the utility function, the risk ε = ∆θ2

borne by the firm in the second period increases the cost of incentives by raising the

required rent payment.

4. INTERTEMPORAL PRICING OF THE BASIC SERVICE

Due to the symmetry of bidders, everything happens as if the principal was actually

dealing with a single firm (referred to as the “winning firm” from now on) but this firm

would have a first-period cost drawn from the distribution of the minimum of n + 1

independent variables. The corresponding distribution function is thus G(θ1) = 1− (1−
F (θ1))n+1 (with density g(θ1) = (n + 1)f(θ1)(1 − F (θ1))n). This remark facilitates the

derivation of the optimal contract under which the winning firm operates.

Furthermore, from the principal’s viewpoint, the reserve price indirectly defines a cutoff

for the winning bidder’s cost for the basic service above which it is preferable not to engage

in the long-term project. We denote by θ̃1 this cutoff.

Under asymmetric information the principal can a priori use two sets of instruments.

First, she may play on the intertemporal profile of prices for each stage pf the project.

Second, she can also use the reserve price. Although the principal cannot adjust quantities

to screen types, she can still decide which firms can participate. On top, the principal can

still shift profits to the second period to reduce the overall cost of information revelation.

In fact, once a bidding strategy b(θ) is given, the rent profile U(θ) is fully determined

by the differential equation (3.7) for types θ ≤ θ̃ and the boundary condition that is

implicitly defined by the reserve price:

(4.1) U(θ̃) = 0.

Proposition 1 The second-period profit usb1 (θ1) + ysb(θ1) of the winning firm satisfies:
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(4.2) wz(u
sb
1 (θ1) + ysb(θ1),∆θ2) = 1 +

F (θ1)

f(θ1)
wzz(u

sb
1 (θ1) + ysb(θ1),∆θ2) ≤ 1, ∀θ1 ≤ θ̃sb1 .

When Assumptions 2 holds, this profit is greater than when θ2 is common knowledge.

As far as the first kind of distortion is concerned, Proposition 1 highlights how the basic

service should be rewarded in the second period. In order to reduce the firm’s marginal

utility of income in the second period and make it less attractive to overstate costs to

secure more profits for the basic service in the second period, the principal pays an extra

premium for the basic service in this period. This Income Effect is stronger when there

is also asymmetric information in the second period. Such asymmetry makes it more

valuable to backload profits for precautionary purposes.

Observe also that (4.2) is independent of the number of competing firms. Competition

plays no role in determining second-period profits which are identical to those achieved

when there is a single provider. The amount of profits that is backloaded to the second-

period is independent of how competitive the environment is. The intuition for this result

is similar to that of the result in Myerson (1981) and Riley and Samuelson (1981) who

show that the reserve price in an optimal auction is independent of the number of bidders.

In our case, the independence is because the payment structure is only relevant for this

one winning bidder. Of course, bids depend on the magnitude of competition as can be

seen from the equilibrium bidding function in (5.1).

To further illustrate this effect and stress the role of second-period uncertainty, we use

(4.2) and the fact that wzε ≥ 0, to get the following string of inequalities:

1 ≥ wz(u
sb
1 (θ1) + ysb(θ1), εsb(θ1)) ≥ wz(u

sb
1 (θ1) + ysb(θ1), 0) = v′(usb1 (θ1) + ysb(θ1)).

This in turn implies that the second-period profit from the basic service usb1 (θ1) + ysb(θ1)

is always non-negative. In fact, the following corollary establishes that usb1 (θ1) + ysb(θ1)

is in fact increasing.

Corollary 1 The second-period payoff usb1 (θ) + ysb(θ) is increasing in θ1:

(4.3) u̇sb1 (θ1) + ẏsb(θ1) ≥ 0.

More profit is backloaded for higher types so that the overall cost of incentives goes

down.

Consider now a type θ1 slightly lower than the cut-off type θ̃1 that is indifferent between

participating or not. Because the rent profile is decreasing, rent minimization calls for

leaving this worst type just indifferent between participating or not, i.e., U(θ̃1) = 0.

Putting together this condition with the fact that second-period profits for the basic
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service are always positive gives

usb1 (θ1) ≤ 0 ≤ usb1 (θ1) + ysb(θ1)

for such a type. To deter the most efficient firms from mimicking those with large first-

period costs, the optimal contract stipulates a first-period loss if large costs are reported

and this loss is only recouped later on.

5. FIRST-PERIOD BIDDING STRATEGIES

We look for a symmetric equilibrium bidding strategy b(θ1) that determines a fixed per-

period price for the basic service as a function of the firm’s announcement of its costs.

Of course, this strategy takes into account the second-period premium specified in the

contract as well as the reserve price set by the principal.

The optimal bidding strategy b0(·) of a risk-neutral firm in a first-price auction with

reserve price θ̃1 is well known to be:

b0(θ1) = θ1 +
1

(1− F (θ1))n

∫ θ̃1

θ1

(1− F (s))nds.

This strategy is an important benchmark to evaluate the firms’ bidding strategy b(θ1)

in our dynamic context. As a preliminary remark, notice that any payment profile

(u1(θ1), y(θ1)) that is chosen by the principal indirectly controls the firms’ bidding strat-

egy b(θ1). Using (3.6) and (3.7), the equilibrium bidding strategy can easily be obtained

in terms of the second-period profit u1(θ1) + y(θ1) as:

b∗(θ1) =b0(θ1)+(5.1)

β

1− β

(∫ θ̃1

θ1

(1− F (s))n

(1− F (θ1))n
wz (u1(s) + y(s),∆θ2) ds− w(u1(θ1) + y(θ1),∆θ2)

)
.

The equilibrium bidding strategy in (5.1) shows that risk aversion in the second period

has two effects. First, it reduces the bids as can be seen in the second part of the second

line of (5.1). This is in line with the literature where Holt (1980) (see also Krishna (2002))

shows that in a standard first-price auction, risk-averse bidders bid more aggressively than

their risk-neutral counterpart. This is because, for a risk-averse bidder compared to a

risk-neutral bidder, the risk of losing the auction from a small increase in the bid has

a larger effect on expected utility than the loss of profits from a slightly lower bid. A

risk-averse bidder would thus be willing to lower his bid more than the risk-neutral bidder

to reduce the risk of loosing the auction.

However, our analysis also unveils an effect that goes in the opposite direction. In

fact the first part of the second line of (5.1) suggests that the equilibrium bid for a risk-
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averse bidder is higher than the risk-neutral equivalent. In fact on top of the risk related

to winning or loosing the auction that is present in Holt (1980), our environment also

contains an inherent risk related to the add-on. To accept this risk, the winning firm will

require a risk premium and this naturally pushes up firms’ bids.

Consider a bidder with costs close to the cut-off θ̃. For such a bidder, the first effect

dominates and the equilibrium bid under risk aversion is, as in the literature, lower than

its bid under risk neutrality. However, the next example shows that this need not be the

case for low enough costs.

Figure 5 illustrates the firms’ equilibrium biddings strategies in the CARA case. Notice

that for costs close enough to the reserve price (0.94 in this example), the bid of a risk-

averse bidder is actually below costs (illustrated by the dotted line). This does of course

not mean that the bidder will make a loss if he wins. However, the chosen payment

structure in the optimal contract will be such that the premium y(θ1) is sufficiently large

so that even if u1(θ1) = b∗(θ1) − θ1 is negative, overall expect utility is positive. (The

figure takes into account this optimal payment structure).

Figure 1.— Equilibrium bidding strategy for risk-averse bidders (red, solid) and risk-
neutral bidders (blue, dashed)

6. OPTIMAL RESERVE PRICE

Let us now turn to the optimal reserve price or, more precisely, its consequences on

participation. For the sake of the comparison, it is useful to recall the value of the cutoff

θ̃rn1 that would be achieved had the firm been risk neutral. When fixing this reserve price,

the principal trades off the overall value of the project (including the expected benefits

from the add-on) and its cost, taking into account information rents left to the winning

firm. It is routine to verify that the cutoff θ̃rn1 solves:

(6.1) S1 + βS2 = θ̃rn1 +
F (θ̃rn1 )

f(θ̃rn1 )
+ βθ̄2.
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This condition simply means that, for the cutoff θ̃rn1 , the overall value of the projects (the

left-hand side of (6.1)) is equal to its virtual costs (the right-hand side). To ensure an

interior solution θ̃rn1 , we will from now on assume:

Assumption 3

θ1 < S1 + β(S2 − θ̄2) < θ1 +
1

f(θ1)
.

We also define θ̃i1 as the cutoff when θ2 is common knowledge and ε can be set to zero.

In that case the take-it-or-leave it offer for the add-on, simply offers a price equal to the

cost realization θ2. We now turn to the characterization of the optimal cutoff as well as

its comparison to θ̃rn and θ̃i.

Proposition 2 The optimal cut-off θ̃sb1 is given by the following equation

S + β(S2 − θ̄2) = θ̃sb1 +
F (θ̃sb1 )

f(θ̃sb1 )
(6.2)

+ β
(
usb(θ̃sb1 ) + ysb(θ̃sb1 )− w

(
usb(θ̃sb1 ) + ysb(θ̃sb1 ),∆θ2

))
+ β

(
F (θ̃sb1 )

f(θ̃sb1 )
(wz(u

sb(θ̃sb1 ) + ysb(θ̃sb1 ),∆θ2)− 1)

)
.

The optimal reserve price in the first-price auction is thus b∗(θ̃sb1 ).

The two distortions away from the risk-neutral bidding strategy identified in the pre-

vious section remain present here. From Proposition 1, the last part of equation (6.2)

is negative. This is because the optimal payment structure shifts parts of the payoff to

the second period and reduces the overall cost of incentives. Thus the optimal cutoff is

reduced.

However, since the firm is risk averse, a payment in the second-period is evaluated at a

lower utility than its monetary equivalent. This means that, for the principal, providing

a certain utility level in the second period becomes more expensive when the firm is risk

averse. This pushes up the principal’s costs and increases the cut-off.

Finally, we can compare the thresholds obtained under different assumptions.

Proposition 3 Assuming that θ2 is common knowledge, the Income Effect increases

participation:

(6.3) θ̃i1 ≥ θ̃rn1 .

When θ2 is private information and Assumptions 2 holds, the Risk Effect decreases par-
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ticipation:

(6.4) θ̃sb1 ≤ θ̃i1.

The Income Effect makes it less attractive to exaggerate first-period costs since pay-

ments are now backloaded. The principal can thus raise the optimal reserve price beyond

its value had firms been risk neutral and thereby foster more participation. However,

the impact of second-period uncertainty on that reserve price goes in the other direction.

First, the Risk Effect requires an extra risk premium to be paid to ensure firms’ partici-

pation. This calls for a lower reserve price and reduces participation. Second, risk on the

add-on increases the marginal utility of income (since wzε ≥ 0) and makes first-period

incentive compatibility more costly. This also pushes towards a lower reserve price and

further reduces participation.

Example (CARA preferences - continued). This example allows us to quantify the

relative impact of both effects and show that whether more risk on the add-on hardens

or exacerbates participation is ambiguous. First, observe that (4.2) now gives us the

following closed-form expression of second-period profits:

usb1 (θ1) + ysb(θ1) =
1

r
ln (η(r,∆θ2)) +

1

r
ln

(
1 + r

F (θ1)

f(θ1)

)
, ∀θ1 ∈ Θ1.

Inserting this expression into (3.7) and taking into account (4.1), we obtain:

U sb1 (θ1) =

∫ θ̃sb1

θ1

(1− F (s))n

(
1− β +

β

1 + rF (s)
f(s)

)
ds, ∀θ1 ∈ Θ1,

where θ̃sb1 solves:

S1 +β(S2− θ̄2)) = θ̃sb1 +
F (θ̃sb1 )

f(θ̃sb1 )
+β

(
1

r
ln (η(r,∆θ2)) +

1

r
ln

(
1 + r

F (θ̃sb1 )

f(θ̃sb1 )

)
− F (θ̃sb1 )

f(θ̃sb1 )

)
.

When ∆θ2 is sufficiently small, the risk-premium 1
r
ln (η(r,∆θ2)) that is required to induce

the firm’s participation is also small and the bracket on the right-hand side remains

negative. The Income Effect drives the direction of the distortion and second-period risk

increases participation.

7. EXTENSION: INCOMPLETE CONTRACTS

This section analyzes the possible costs that parties incur when they are not able to

perfectly commit ex ante to a complete contract with a single firm in charge of providing

both the basic service and the add-on. Such scenarios are meant to capture the highly

incomplete contracting environments that may surround long-term contracts, a concern
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that has repeatedly been brought forward by practitioners in the PPPs sector.19 The

examples related to the Norwegian Road Adminsitration and their contracts are also

examples where the add-on is not clearly included in the initial contract.

In practice, parties might face unforeseen contingencies that could not be anticipated

and written into the initial contract, especially if this contract covers the provision of

a basic service over many years. To model such settings, we now suppose that ex ante

parties can only agree on a highly incomplete long-term contract which does not even

specify payments and output requirements for the add-on. Of course and in accordance

with the incomplete contracting literature,20 the mere opportunity of such additional

projects can be anticipated. In the remainder of this section we argue that contracting

on the add-on on the spot entails entails the same results as our complete contracting

framework.

In fact, even if parties can only contract on the add-on at the interim stage, the same

allocation as in the optimal long-term contract Csb can still be implemented. To see

how, consider a long-term agreement
{
b(θ̂1), y(θ̂1)− ν∆θ2

}
θ̂1∈Θ1

that regulates the basic

service over the whole relationship and, as such, does not specify any risk premium nor

any add-on specification. At the beginning of the second period, parties agree on a spot

contract to regulate this add-on. This spot contract specifies a price p(θ̂1, θ̂2) for the

add-on as a function of announced costs. This spot contract does not modify the firm’s

risk attitude and, even though it is anticipated by parties, it has no impact on first-period

incentives. Compounding the impact of this spot contract with the initial contract for

the basic service replicates the optimal long-term contract.

Proposition 4 There is no loss of generality in contracting for the add-on only in the

second period.
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APPENDIX A: PROOFS

Proof of Lemma 1: Necessity. From Theorem 2 and Corollary 1 in Milgrom and

Segal (2002), it immediately follows that U(θ1) is absolutely continuous and thus almost

everywhere differentiable with (3.7) holding at any point of differentiability.

Sufficiency. ∀(θ1, θ̂1), we rewrite (3.5) as:

U(θ1) ≥U(θ̂1) + (1− F (θ̂1))n
[
(1− β)(θ̂1 − θ1)(A.1)

+β
(
w(u(θ̂1) + y(θ̂1) + (θ̂1 − θ1),∆θ2)− w(u(θ̂1) + y(θ̂1),∆θ2)

)]
.

Using (3.7) and absolute continuity, the rent profile U(θ1) satisfies:

U(θ1)−U(θ̂1) =

∫ θ̂1

θ1

(1−F (s))n (1− β + βwz(u(s) + y(s),∆θ2)) ds, ∀(θ1, θ̂1) ∈ Θ2.

Condition (A.1) thus holds when:

∫ θ̂1

θ1

(1− F (s))n (1− β + βwz(u(s) + y(s),∆θ2)) ds ≥

(1−F (θ̂1))n
[
(1− β)(θ̂1 − θ1) + β

(
w(u(θ̂1) + y(θ̂1) + (θ̂1 − θ1),∆θ2)− w(u(θ̂1) + y(θ̂1),∆θ2)

)]
.

Because w(·) is concave in its first argument, we have:

w(u(θ̂1)+y(θ̂1)+(θ̂1−θ1),∆θ2)−w(u(θ̂1)+y(θ̂1),∆θ2) ≤ (θ̂1−θ1)wz(u(θ̂1)+y(θ̂1),∆θ2).

A sufficient condition for (A.1) to hold is thus:

∫ θ̂1

θ1

(1− F (s))n (1− β + βwz(u(s) + y(s),∆θ2)) ds ≥(A.2)

(θ̂1 − θ1)(1− F (θ̂1))n
(

1− β + βwz(u(θ̂1) + y(θ̂1),∆θ2

)
.

Observe now that (1−F (θ1))n(1−β+βwz(u(θ1)+y(θ1),∆θ2)) weakly decreasing implies
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(A.2). Hence, a sufficient condition to get (A.2) and thus (A.1) is given by:

(1− F (θ1))n(1− β + βwz(u(θ1) + y(θ1),∆θ2)) weakly decreasing.

Inserting into (3.7), this condition amounts to having U(·) convex. Q.E.D.

Proof of Propositions 1, 2 and 3 : The principal’s intertemporal payoff when deal-

ing with this firm can be written as:

W(u1(θ1),U(θ1)) = S1−θ1+β(S2−θ̄2)−(1−β)u1(θ1)−βϕ

( U(θ1)
(1−F (θ1))n

− (1− β)u1(θ1)

β
,∆θ2

)
.

Given the type distribution G(·) of the winning firm’s bid, the problem with this repre-

sentative firm can now be written as follows:

(Pas) : max
(u(θ),U(θ),θ̃)

∫ θ̃1

θ1

W(u1(θ1),U(θ1))g(θ1)dθ1 subject to (3.7)-(4.1).

This is a relaxed optimization problem since incentive compatibility has been reduced

to its necessary condition (3.7). Equipped with this expression, and denoting by λ the

costate variable for (3.7) we can now write the Hamiltonian for problem (Pas) as:

H(u1,U ,λ, θ1) = (n+ 1)f(θ1)(1− F (θ1))nW(u1(θ1),U(θ1))

− λ(1− F (θ1))n

(
1− β + βwz

(
ϕ

( U(θ1)
(1−F (θ1))n

− (1− β)u1(θ1)

β
,∆θ2

)
,∆θ2

))
.

Since H(u1,U , θ1) is concave in (u1,U)21, we can use the Pontryagyn Principle to get

necessary and sufficient conditions for the optimum. These necessary and sufficient con-

ditions are listed below.

•Costate variable. There exists λ, continuous and differentiable, such that:

λ̇(θ1) =

(
(n+ 1)f(θ1) + λ(θ1)wzz

(
ϕ

( U(θ1)
(1−F (θ1))n

− (1− β)u1(θ1)

β
,∆θ2

)
,∆θ2

))
×(A.3)

ϕζ

( U(θ1)
(1−F (θ1))n

− (1− β)u1(θ1)

β
,∆θ2

)
.

•Transversality condition. Because there is no boundary condition on U at θ, the transver-

21It is straightforward to show that H(u1,U , θ1) is concave in (u1,U) if and only if it is concave in U .

The condition for concavity in U simplifies to 1 ≥ λ(θ1)
(n+1)f(θ1)

wzz

(
ϕ

( U(θ1)

(1−F (θ1))n
−(1−β)u1(θ1)

β ,∆θ2

)
,∆θ2

)
,

which always holds given the value of λ(θ1) found below and given that wzz ≤ 0.
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sality condition is given by:

(A.4) λ(θ) = 0.

•Optimality condition with respect to u1. Using the first-order condition, we find:

1 =ϕζ

( U(θ1)
(1−F (θ1))n

− (1− β)u1(θ1)

β
,∆θ2

)
(A.5) (

1 +
λ(θ1)

(n+ 1)f(θ1)
wzz

(
ϕ

( U(θ1)
(1−F (θ1))n

− (1− β)u(θ)

δ
,∆θ2

)
,∆θ2

))
.

We now use these optimality conditions to derive more specific results.

• Proposition 1. Inserting (A.5) into (A.3) yields λ̇(θ1) = (n + 1)f(θ1). Taking into

account (A.4) yields λ(θ1) = (n + 1)F (θ1). Inserting this expression into (A.5), and

simplifying yields (4.2).

• Corollary 1. Straightforward differentiation of (4.2) yields:

(A.6) (u̇1(θ1) + ẏ(θ1)) =

d
dθ1

(
F (θ1)
f(θ1)

)
wzz(u

sb
1 (θ1) + ysb(θ1),∆θ2)

wzz(usb1 (θ1) + ysb(θ1),∆θ2)− F
f

(θ1)wzzz(usb1 (θ1) + ysb(θ1),∆θ2)
.

Risk aversion implies that wzz(·) is negative, while Assumption 1 ensures that the deriva-

tive of the hazard rate is non-negative. Finally, Assumption 2 implies wzzz ≥ 0 and yields

the result in Corollary 1.

• Proposition 2. From Seierstad and Sydsaeter (1987) the optimality condition with

respect to θ̃1 writes as:

(A.7) H(u1(θ̃1),U(θ̃1), λ(θ̃1), θ̃1) = 0.

Taking into account (4.1), this optimality condition can be expressed as:

S1 + β(S2 − θ̄2) = θ̃1

+(1−β)u1(θ̃1)+βϕ

(
−(1− β)

β
u1(θ̃1),∆θ2

)
+
F (θ̃1)

f(θ̃1)
(1−β+βwz(u1(θ̃1)+y(θ̃1),∆θ2)).

Using the definition of ϕ(·), this condition can be simplified to (6.2)

• Proposition 3. Mutatis mutandis, we can also use the same conditions as above when

θ2 is common knowledge. In this case, the firm is paid p(θ̂1, θ1) = θ2. It is thus enough
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to replace ∆θ2 by 0 in (6.2) and the expected price of the add-on by E[θ2] to get the

following expression for θ̃i that is chosen when θ2 os common knowledge:

(A.8) S1 + β(S2 − E[θ2]) = θ̃i +
F (θ̃i)

f(θ̃i)

+β

(
u1(θ̃i) + y(θ̃i)− v(u1(θ̃i) + y(θ̃i)) +

F (θ̃i)

f(θ̃i)
(v′(u1(θ̃i) + y(θ̃i))− 1)

)
.

Define µ(θ1) ≡ ui1(θ) + yi(θ). From (4.2), we know that µ(θ1) solves:

(A.9) v′(µ(θ1)) = 1 +
F (θ1)

f(θ1)
v′′(µ(θ1)).

We will use the function µ(θ1) to define J(θ1) as:

(A.10) J(θ1) = µ(θ1)− v(µ(θ1)) +
F (θ1)

f(θ1)
(v′(µ(θ1))− 1).

First observe that from (4.2) and the normalizations made on v(·), J(θ1) = 0. Second,

differentiating and taking into account (A.9) yields:

(A.11) J̇(θ1) =
d

dθ

(
F (θ1)

f(θ1)

)
F (θ1)

f(θ1)
v′′(µ(θ1)) ≤ 0,

where the last inequality follows from Assumption 1. From this, it follows that J(θ̃i) < 0

when θ̃i > θ1. Inserting into (6.2), we deduce that:

S1 + β(S2 − E[θ2]) < θ̃i +
F (θ̃i)

f(θ̃i)
.

Since S1 + β(S2 − θ̄2) < S1 + β(S2 − E[θ2]), this gives us (6.3).

From Assumption 2, we have:

−w (u1(θ1) + y(θ1),∆θ2)+
F (θ1)

f(θ1)
wz(u1(θ1)+y(θ1),∆θ2) ≥ −v(u1(θ1)+y(θ1))+

F (θ1)

f(θ1)
v′(u1(θ1)+y(θ1)).

Using this for θ1 = θ̃sb1 and inserting it into (6.2) yields:

S1 + β(S2 − θ̄2) ≥(A.12)

θ̃sb1 +
F (θ̃sb1 )

f(θ̃sb1 )
+ β

(
u1(θ̃sb1 ) + y(θ̃sb1 )− v(u1(θ̃sb1 ) + y(θ̃sb1 )) +

F (θ̃sb1 )

f(θ̃sb1 )
(v′(u1(θ̃sb1 ) + y(θ̃sb1 ))− 1)

)
.

Since S1 + β(S2 − θ̄2) < S1 + β(S2 − E[θ2]), this implies (6.4). Q.E.D.
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Proof of Proposition 4: Suppose that the contract (bsb(θ̂1), ysb(θ̂1) − ν∆θ2) reg-

ulates the basic service over the two periods of the relationship. Following the same

arguments as for second-period incentive compatibility in Section 3, it is straightforward

to conclude that, ex post, for the firm to accept the spot contract for all values of θ2, we

must have p = θ̄2, ∀(θ1, θ2).

This implies that the second-period profit from the add-on is:

U2(θ2) = ∆θ2,

U2(θ̄2) = 0.

Using these values of U2, we can write the firm’s second period expected utility as:

E [ v(bsb(θ̂1)− θ1 + ysb(θ̂1)− ν∆θ2) + U2(θ2)
]

= νv(bsb(θ̂1)− θ1 + ysb(θ̂1) + (1− ν)∆θ2) + (1− ν)v(bsb(θ̂1)− θ1 + ysb(θ̂1)− ν∆θ2))

= w(bsb(θ̂1)− θ1 + ysb(θ̂1),∆θ2).

This condition means that the firm, anticipating acceptance of the spot contract p = θ̄2,

also truthfully reveals its type to get the same payoff as in the second-best contract Csb,
namely:

U sb(θ1) = max
θ̂1∈Θ1

(1− β)(bsb(θ̂1)− θ1) + βw(bsb(θ̂1)− θ1 + ysb(θ̂1),∆θ2).

This shows that the same outcome as with Csb can be obtained even if the add-on cannot

be contracted within the intial ex ante contract. Q.E.D.


	Introduction
	The Model
	Incentive Compatibility
	Intertemporal pricing of the basic service
	First-period bidding strategies
	Optimal reserve price
	Extension: Incomplete contracts

