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Abstract

With the rapid increase in Long-Term Care (LTC) needs, the negligible role of the market and

the declining role of informal family care, one would hope that the government would take a more

proactive role in the support of dependent elderly, particularly those who cannot, whatever the

reason, count on assistance from their family. The purpose of this paper is to analyze the possibility

of designing a sustainable public LTC scheme that would meet a widespread concern, that of going

bankrupt and being unable to bequeath any saving to one's children.
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1 Introduction

Due to the ageing process, the rise in long-term care needs constitutes a major challenge of the coming

decades. Long-term care (LTC) concerns individuals who are no longer able to carry out basic daily

activities such as eating, washing, dressing, etc. Nowadays, the number of persons in need of LTC

is substantial. According to Frank (2012), in 2010 nearly 10 million Americans required ongoing help

through LTC. This number is expected to grow to reach 15 million by 2020. Similarly in Europe, the

number of persons in need of LTC is expected to grow from 27 million in 2013 to 35 million by year 2060

(see EU 2015).

The expected rise in the number of persons in need of LTC raises the question of the provision of

care. As stressed by Norton (2000), about two thirds of LTC is generally provided by informal care
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givers (mainly the family, i.e. spouses, daughters and step-daughters). Recent �gures in Frank (2012)

show that about 80 % of dependent individuals in the U.S. receive informal care from relatives and

friends. The remaining of LTC is provided formally, that is, through services that are paid on the

market. Formal care can be provided either at the dependent's home, or in an institution (care centers

or nursing homes). Whereas LTC services do not require high skills, they are nonetheless extremely

expensive. Those large costs raise the question of the funding of formal LTC. And that question will

become increasingly important in the future, when it is expected that the role of informal LTC provision

will decrease. The implication of this is that �nancial risks associated with meeting LTC needs will grow

and therefore the development of mechanisms for absorbing these risks will gain in importance.

Given that each person has a large probability to enter a nursing home when becoming old and given

the large costs of these institutions, one would expect that private LTC insurance markets expand, in

order to insure individuals. However, although markets for private LTC insurance exist, these remain thin

in most countries. According to Brown and Finkelstein (2007), only about 9 to 10 % of the population

at risk of facing future LTC costs has purchased a private LTC insurance in the U.S. This is the so-

called "long-term care insurance puzzle".1 Because of various reasons pertaining both to the demand

side (myopia, denial of LTC, crowding out by the family, etc.) and to the supply side of that market

(high loading factors, unattractive reimbursement rules, etc.), only a small fraction of the population

buys LTC private insurance. One can thus hardly rely only on the development of private LTC insurance

markets to fund the cost of LTC.

In the light of the expected decline in informal care, and of the di�culties faced by the market for

private LTC insurance, one would hope that the public sector plays a more important role in the provision

and funding of LTC. Nowadays, in most advanced economies, the State is involved either in the provision

or in the funding of LTC services, but to an extent that varies strongly across countries. However, the

involvement of the public sector in LTC is not as comprehensive and generous as it is for the funding of

general health services. The LTC "pillar" of the Welfare State remains quite thin in comparison with

other pillars of the social insurance system.

Recently a number of papers have looked at the design of an optimal social insurance for LTC.2 In

most cases, they assume at the outset that the LTC public bene�t is �at and thus not related to the

severity of the dependence, nor to the amount of contributions. Those papers do not meet one of the

concerns of most dependents, which is that they might incur very large costs that would force them to sell

all their assets and prevent them from bequeathing any of them. This concern is not met by current LTC

practices either. This concern could be dealt with by a system in which individuals' contributions to their

long-term care costs are capped at a certain amount after which individuals would be fully covered for all

further expenditures. Such a system was proposed in the UK by Dilnot (2011). The Dilnot Commission

describes the rationale for this suggestion in terms of the bene�ts of insurance. While only a fraction

1Pestieau and Ponthière (2012).
2See, e.g., Cremer et al. (2016), Cremer and Roeder (2013), Pestieau and Sato (2008).
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of the dependents (in their estimates around a third) would reach the proposed cap of about ¿35,000,

everyone would bene�t from knowing that if they ended up in the position of facing these costs, they

would be covered, removing the fear and uncertainty of the current system (Dilnot, 2011, p. 32).

We argue that this proposed formula can be justi�ed as an e�cient insurance policy, applying Arrow's

(1963) theorem on insurance deductibles. This theorem goes as follows: �If an insurance company is

willing to o�er any insurance policy against loss desired by the buyer at a premium which depends only

on the policy's actuarial value, then the policy chosen by a risk-averting buyer will take the form of 100%

coverage above a deductible minimum� (Arrow, 1963). In an earlier paper, Klimaviciute and Pestieau

(2016), we show that optimal social LTC insurance indeed features a deductible as long as there are

loading costs. In that paper, we study a non-linear policy allowing for the deductibles to di�er between

the individual types and the states of nature. In the present paper, we want to explore a more restricted

policy in which the government is constrained to use linear instruments and the same deductible for all

types and in both dependence states of nature. We consider thus a social insurance scheme that consists

of a linear payroll tax and of a 100% coverage of LTC risks above a deductible. Another feature of this

paper is that besides the heterogeneity in income we consider the reasonable hypothesis that there is a

negative correlation between the income levels and the probability of dependence.

The rest of the paper is organized as follows. Section 2 presents the model. Section 3 discusses

optimal public policy in the absence of private LTC insurance, while Section 4 looks at the case when

private insurance is available. Section 5 concludes, whereas some additional analysis and more technical

material are provided in the Appendixes.

2 The model

We consider a two period model with a society consisting of N types of individuals. Individuals di�er in

their �rst period income yi (i = 1, ..., N)3 and in their probabilities to become dependent in the second

period. In the �rst period, individuals choose how to allocate their disposable income between their

�rst period consumption ci and savings for the second period si (i = 1, ..., N). In the second period,

individuals face the risk of becoming dependent. With probability π1i (i = 1, ..., N), they experience a

low severity level of dependence in which case they have LTC needs (expressed in terms of costs incurred)

L1, with probability π2i (i = 1, ..., N), they face a heavy dependence with LTC needs L2 > L1, and

with probability 1− π1i − π2i, they remain healthy. We assume that the risk of dependence is negatively

correlated with individual income, i.e. π1j > π1k and π2j > π2k for all j, k for which yj < yk. We �rst

assume that there is no market for private LTC insurance (re�ecting the fact that, as mentioned in the

Introduction, private LTC insurance market is in most countries very small or inexistent), but later on,

in Section 4, we also consider the case where private insurance purchases are possible.

3For simplicity, we do not model explicitly individual choices of labour supply and consider individual income as exoge-
nously given.
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We consider a government which introduces a public policy consisting of a linear income tax of rate

τ used to �nance social LTC insurance and a demogrant A provided in the �rst period (in Appendix A

we also discuss the case without a demogrant). Most of our analysis focuses on the case of a utilitarian

government, but in Section 3 we also look at the case of a Rawlsian social welfare function which allows

us to derive some deeper insights about the impact of redistributional concerns. We then discuss the

Rawlsian case in Section 4 as well. We account for the ine�ciency in tax collection by assuming that a tax

rate τ is associated with a quadratic cost γτ
2

2 , with γ > 0. We also assume that insurance provision is not

costless for the government, i.e. the government faces loading costs λ > 0 which re�ect, for instance, the

associated administrative expenses. Following Arrow's (1963) �theorem of the deductible�, we consider

a social LTC insurance scheme in which individuals have to pay for their LTC needs themselves until

a certain amount D above which the costs are fully covered by the government. Note, however, that if

LTC costs in some state of nature are lower than D, the government provides no insurance in that state

and the individuals simply pay the entirety of their costs. We will assume that D is always lower than

the costs in the heavy dependence state (L2) but will consider the possibility that it is higher than the

costs in the state of a light dependence (L1).
4

Denoting by cD1
i , cD2

i and cIi the second period individual wealth levels5 in respectively the light

dependence, the heavy dependence and the healthy states, the expected utility of an individual i (i =

1, ..., N) can be written as follows:6

Ui = u (ci) + π1iu
(
cD1
i

)
+ π2iu

(
cD2
i

)
+ (1− π1i − π2i)u(cIi )

where ci = yi(1− τ) +A− si,

cD1
i =

si −D if D ≤ L1

si − L1 if D > L1

,

cD2
i = si −D and cIi = si.

The individual choice of savings is made so as to satisfy the following FOC:

u′ (ci) = π1iu
′
(
cD1
i

)
+ π2iu

′
(
cD2
i

)
+ (1− π1i − π2i)u

′(cIi ) (1)

It should be noted that, in the presence of a negative correlation between individual income and the

risk of dependence, the comparison of savings chosen by di�erent individual types is generally ambiguous

4In this paper we assume that dependency occurs in the whole second period of life and that it is measured in monetary
units. In a more realistic model, dependency can occur at any age and last as long as life. In that case an insurance with
deductible would cover all LTC expenses beyond a given length of dependency. For this, see Drèze et al. (2016).

5Individuals can obviously decide how to allocate their wealth between, e.g., their old age consumption and bequests
left to their children. We do not model these choices explicitly but rather focus on individuals' total wealth. As long as
bequests are considered as normal goods, wealthier individuals will leave higher bequests. In other words, individuals want
to smooth both their consumption and their bequests across the states of nature.

6For simplicity, we assume that individuals have the same utility functions in both periods and in all states of nature.
Another way would be to assume state dependent preferences, but this makes the problem quite more complicated.
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and depends on the di�erences in y and in dependence probabilities. If, for instance, there are only small

di�erences in y but large di�erences in dependence probabilities between the types, it is possible that

poorer individuals will save more than the richer ones because they have a higher risk to experience the

states of nature with losses (LTC costs). It seems, nevertheless, that such a situation is less likely to

occur and that it is more reasonable to expect di�erences in y to be larger than di�erences in dependence

probabilities. In what follows, we therefore assume this more reasonable scenario and consider that

savings of richer individuals are higher than those of poorer ones.

In order to focus on the impact of redistributional concerns, we also make an assumption that the

loading costs λ are not too large so that, from the pure point of view of insurance provision, insuring

individuals against LTC costs (i.e. proposing D < L2) is desirable. More speci�cally, we assume that at

the point D = L2, we have

λ <

∑
ni

[
u′
(
cD2
i

)
− u′ (ci)

]
∑
niu′ (ci)

(2)

3 Optimal linear policy without private insurance

We now turn to the derivation of the optimal public policy and we �rst study the case of a utilitarian

government.

3.1 Utilitarian case

The Lagrangean of the government's problem can be written as follows:7

L =
∑

ni [u (yi(1− τ) +A− si) + π1iu (si −D) + π2iu (si −D) + (1− π1i − π2i)u(si)] +

+µ
∑

ni

[(
1− γτ

2

)
τyi −A− (1 + λ)π1i(L1 −D)− (1 + λ)π2i(L2 −D)

]
(3)

where ni is the share of type i individuals in the society (
∑
ni = 1) and µ is the Lagrange multiplier

associated with the government's budget constraint. Note that (3) applies as long as D ≤ L1 holds. If

D > L1, the term π1iu (si −D) becomes π1iu (si − L1) and the term (1 + λ)π1i(L1 −D) disappears.

Using the envelope theorem, the FOCs for the policy variables write in the following way:

∂L
∂τ

= −
∑

niu
′ (ci) yi + µ

∑
niyi (1− γτ) = 0 (4)

7We focus on the policy including a demogrant. For comparison, the utilitarian case without a demogrant is provided
in Appendix A.
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∂L
∂A

=
∑

niu
′ (ci)− µ = 0 (5)

∂L
∂D

= −
∑

niπ1iu
′
(
cD1
i

)
−
∑

niπ2iu
′
(
cD2
i

)
+ µ

∑
ni(1 + λ)π1i + µ

∑
ni(1 + λ)π2i = 0 (6)

Note that for D > L1, the �rst and the third terms disappear from equation (6).

We can then de�ne the following compensated FOCs:

∂Lc

∂τ
=
∂L
∂τ

+
∂L
∂A

dA

dτ
= 0

and

∂Lc

∂D
=
∂L
∂D

+
∂L
∂A

dA

dD
= 0

with dA
dτ = (1− γτ) ȳ and dA

dD = (1 + λ)π̄1 + (1 + λ)π̄2 derived from the budget constraint, where

ȳ =
∑
niyi, π̄1 =

∑
niπ1i and π̄2 =

∑
niπ2i.

After some manipulations, the compensated FOC for τ can be written as

∂Lc

∂τ
= −cov [u′ (c) , y]− γτ ȳ

∑
niu
′ (ci) = 0

This gives

τ =
−cov [u′ (c) , y]

γȳ
∑
niu′ (ci)

> 0

The optimal tax rate thus exhibits the usual tradeo� between e�ciency (the term in the denominator)

and redistribution (the term in the numerator which is positive since cov [u′ (c) , y] is negative).

Similarly, the compensated FOC for D can be written as

∂Lc

∂D
= −cov

[
π1, u

′ (cD1
)]
− cov

[
π2, u

′ (cD2
)]

+

+π̄1

∑
ni

[
(1 + λ)u′ (ci)− u′

(
cD1
i

)]
+ π̄2

∑
ni

[
(1 + λ)u′ (ci)− u′

(
cD2
i

)]
= 0 (7)

The compensated derivative ∂Lc

∂D has four terms (note again that for D > L1, the �rst and the third

terms will disappear). The last two terms re�ect purely the motive of insurance and would be present

even if all individuals were identical. The �rst two terms, on the other hand, re�ect the motive of

redistribution. Given the assumption that di�erences in y are su�ciently large compared to di�erences

in dependence probabilities so that consequently richer individuals save more than poorer ones, the two
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covariances are positive and thus the two �rst terms call for a lower deductible. Indeed, since those who

are worse-o� (i.e. the poor) have a higher probability to become dependent, transfering resources to the

dependence states of nature reinforces redistribution.

It is instructive to study ∂Lc

∂D by evaluating it at D = 0 (which means full insurance provided by the

government).8 It can �rst be noted that if λ = 0, the last two terms of ∂L
c

∂D are then equal to zero, which

means that, because of the negative �rst two terms, the compensated derivative is negative, implying

that it is optimal to have D < 0. Thus, if there are no loading costs, the possibility to use insurance for

redistribution calls for providing more than full insurance (whereas in the case of identical probabilities,

with the covariance terms being equal to zero, full insurance would be optimal under λ = 0). On the

other hand, if λ > 0, the last two terms are positive at D = 0, which makes the sign of the whole

derivative ambiguous. Indeed, since insurance is costly, it might be no longer optimal to provide more

than full, or even full, insurance. Note, however, that, di�erently from the case of identical probabilities

where we have less than full insurance as soon as λ > 0, full insurance is not necessarily excluded under

heterogeneous probabilities and might still be optimal if the loading costs are not too large compared to

the redistributional concerns.

To gain a deeper insight into how the optimal deductible is in�uenced by redistributional concerns, we

will now look at the solution obtained under a Rawlsian social welfare function implying the maximisation

of the least well-o� individual's welfare.

3.2 Rawlsian case

The least well-o� individual in the considered society is the one having the lowest income and the highest

probability of dependence. Let us assume that this individual is of type i = N and, for simplicity, that

yN = 0. Let us also focus on the case of D ≤ L1 to allow for D being smaller or equal to zero. The

Lagrangean of the government's problem can thus be written as follows:

L =u (A− sN ) + π1Nu (sN −D) + π2Nu (sN −D) + (1− π1N − π2N )u(sN )+

+φ
[(

1− γτ

2

)
τ ȳ −A− (1 + λ)π̄1(L1 −D)− (1 + λ)π̄2(L2 −D)

]
(8)

where φ is the Lagrange multiplier associated with the government's budget constraint and ȳ, π̄1 and

π̄2 are the average values of y, π1 and π2 as de�ned before.

The FOCs for the policy variables now write in the following way:

8Note that in this case, the assumption about the relative size of di�erences in y and dependence probabilities is not
needed: in the presence of full insurance, wealth levels in the three second period states of nature are equalized and
di�erences in dependence probabilities thus play no role in the individual saving decisions. Richer individuals therefore
always save more than poorer ones.
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∂L
∂τ

= φȳ (1− γτ) = 0 (9)

∂L
∂A

= u′ (cN )− φ = 0 (10)

∂L
∂D

= −π1Nu
′
(
cD1

N

)
− π2Nu

′
(
cD2

N

)
+ φ(1 + λ)π̄1 + φ(1 + λ)π̄2 = 0 (11)

From (9) we have that the optimal tax rate is simply τ = 1
γ . As far as the optimal deductible is

concerned, combining (11) with (10), using (1) and noting that for D ≤ L1 we have u′
(
cD1

N

)
= u′

(
cD2

N

)
,

we obtain the following FOC:

(1 + λ) (π̄1 + π̄2) (1− π1N − π2N )u′
(
cIN
)
− (π1N + π2N )u′

(
cD1

N

)
[1− (1 + λ) (π̄1 + π̄2)] = 0 (12)

It can be easily veri�ed that if π1N+π2N

π̄1+π̄2
= 1 + λ, we have D = 0 and if π1N+π2N

π̄1+π̄2
> (resp. <) 1 + λ,

we have D < (resp. >) 0. The optimal deductible is thus in�uenced by the ratio between the sum of

the dependence probabilities of the poorest individual (which is more generally the poorest individual's

probability to become dependent, whatever the severity level) and the sum of the population's average

dependence probabilities (which is the population's average probability to become dependent, whatever

the severity level). If the poorest individual's dependence probability is much higher than the population

average, it might be optimal to have a negative deductible even in the presence of loading costs. In

Appendix B we show more generally that the optimal deductible decreases when the ratio π1N+π2N

π̄1+π̄2
goes

up. The more the poorest individual is likely to become dependent compared to the average in the society,

the more resources need to be transferred to the dependence states of nature.

4 The case with private insurance

So far we have assumed away the possibility for individuals to purchase insurance on the private market.

We are now going to introduce this possibility. Rochet (1991) shows, in the context where both private

and social insurance have no loading costs, that a utilitarian optimum implies no use of private insurance

as long as there is a negative correlation between individual productivity and the probability of loss. He

also shows that private insurance is not used when the government's objective is Rawlsian. We are going

to explore if these results are valid in our context.

We therefore assume that there is a market for private LTC insurance and that private insurance

can cover part of the social insurance deductible thus reducing the amount of LTC expenses that the

individual e�ectively incurs. More precisely, we denote by α1i (0 ≤ α1i ≤ 1) the fraction of the social

insurance deductible to be covered in the state of light dependence and by α2i (0 ≤ α2i ≤ 1) the fraction
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to be covered in the heavy dependence state (i = 1, ..., N). We also assume that private insurers face the

same loading costs (λ) as the government.

The timing we consider is the following. First, the government announces its policy consisting of

a linear income tax of rate τ , a demogrant A and social LTC insurance with a deductible D. Given

this policy, individuals then choose their savings si and their private insurance coverage characterized

by fractions α1i and α2i of the social insurance deductible. Reasoning backwards, we will �rst discuss

individual choices and then we will look at the government's policy.

4.1 Individual choices

The expected utility of an individual i can be written as follows:

Ui = u (ci) + π1iu
(
cD1
i

)
+ π2iu

(
cD2
i

)
+ (1− π1i − π2i)u(cIi )

where ci = yi(1− τ) +A− Pi − si,

cD1
i =

si − (1− α1i)D if D ≤ L1

si − (1− α1i)L1 if D > L1

,

cD2
i = si − (1− α2i)D , cIi = si and Pi is the private insurance premium given by

Pi = (1 + λ) [π1iα1i + π2iα2i]D (13)

if D ≤ L1, or by

Pi = (1 + λ) [π1iα1iL1 + π2iα2iD] (14)

if D > L1.

The FOC for si writes as in (1), whereas the FOCs for α1i and α2i are respectively

−u′ (ci) (1 + λ) + u′
(
cD1
i

)
≤ 0 (15)

and

−u′ (ci) (1 + λ) + u′
(
cD2
i

)
≤ 0 (16)

Assuming interior solutions and combining (15) and (16), we have u′
(
cD1
i

)
= u′

(
cD2
i

)
, which implies

(1− α1i)D = (1− α2i)D (or (1− α1i)L1 = (1− α2i)D).

We can de�ne Mi ≡ (1− α1i)D = (1− α2i)D (or Mi ≡ (1− α1i)L1 = (1− α2i)D), Mi being the true

deductible that an individual i has to pay. We can then rewrite the individual problem in terms of Mi

as follows:
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max
si,Mi

[
Ui = u (ci) + π1iu

(
cD1
i

)
+ π2iu

(
cD2
i

)
+ (1− π1i − π2i)u(cIi )

]
where ci = yi(1− τ) +A− Pi − si,
cD1
i = cD2

i = si −Mi,

cIi = si and Pi = (1 + λ)π1i(D −Mi) + (1 + λ)π2i(D −Mi) if D ≤ L1 or Pi = (1 + λ)π1i(L1 −Mi) +

(1 + λ)π2i(D −Mi) if D > L1.

The FOC for si again writes in the same way as in (1), while the FOC for Mi can be written as

u′ (ci) [(1 + λ)π1i + (1 + λ)π2i]− π1iu
′
(
cD1
i

)
− π2iu

′
(
cD2
i

)
= 0 (17)

Evaluating the left-hand side of (17) at Mi = 0, it can be easily veri�ed that, as long as λ > 0, the

optimal level ofMi is always greater than zero. In other words, as long as there are loading costs, private

insurance always features a strictly positive deductible (individuals purchase less than full insurance).

For further analysis, it is useful to explore how the optimal level ofMi di�ers between individual types

and in particular, how it depends on the two individual characteristics: income and dependence proba-

bilities. In Appendix C, we show that the way in which Mi is in�uenced by these two variables depends

on the absolute risk aversion (ARA) exhibited by the utility function. As far as income is concerned,

we show that Mi is increasing in yi under decreasing absolute risk aversion (DARA), decreasing in yi

under increasing absolute risk aversion (IARA) and constant in yi under constant absolute risk aversion

(CARA) preferences.9 To see the intuition of this result, recall that a higher deductible means less insur-

ance. Since under DARA (resp. IARA) wealthier people are less (resp. more) risk averse, they require

less (resp. more) insurance. On the other hand, we �nd that Mi is increasing in dependence probability

under CARA and IARA preferences, while the e�ect is ambiguous under DARA. To understand this

result, �rst note that an increase in dependence probability raises the price of insurance. There is then

a substitution e�ect which pushes for buying less insurance (i.e. increasing the deductible). However,

there is also a wealth e�ect in the sense that an increase in the price of insurance makes the individ-

ual �poorer�. In the case of IARA, this translates into the individual becoming less risk averse, which,

like the substitution e�ect, pushes for a higher deductible. The deductible thus clearly increases under

IARA. In contrast, under DARA, the wealth e�ect pushes to the opposite direction than the substitution

e�ect since poorer individuals are more risk averse in that case and thus require lower deductibles. The

overall e�ect is thus ambiguous. Finally, under CARA, the wealth e�ect plays no role and the deductible

increases only due to the substitution e�ect.

Let us now discuss what conclusions can be made about the di�erences in Mi between individual

types. Under CARA, Mi does not depend on income but increases with dependence probability, which,

taking into account the negative correlation between income and dependence probabilities, implies that

9DARA (resp. IARA and CARA) means that absolute risk aversion decreases (resp. increases and remains constant)
when wealth increases. For more details, see Appendix C.
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poorer (and thus higher probability) individuals will clearly choose higher deductibles than richer ones.

Under IARA, Mi also increases with dependence probability and, in addition to this, decreases with

income, which again makes it clear that the deductible will be higher for poorer individuals. On the

other hand, this is not necessarily the case under DARA. First, under DARA, Mi increases with income,

which pushes for poorer individuals having lower deductibles. Second, the e�ect of dependence probability

is ambiguous. If it is negative, i.e. if Mi decreases with dependence probability, then poorer individuals

will indeed have lower deductibles than richer ones. If it is positive, i.e. if Mi increases with dependence

probability, then the total e�ect is not clear. No clear-cut comparison can therefore be made in the case

of DARA.

4.2 Public policy

We can now turn to public policy. Let us �rst consider the utilitarian case discussed in Section 3.1 but

with a presence of the above described private insurance market. Using the envelope theorem, it can

be veri�ed that the FOCs of the social planner's problem write in the same way as in the case without

private insurance (equations (4)-(6)). The compensated FOC for D thus also writes in the same way as

equation (7). Let us now analyze this equation given the presence of private insurance.

When there is little social insurance (D is high), all individuals buy private insurance (assuming that

everyone can a�ord it) and we have (1 + λ)u′ (ci)− u′
(
cD1
i

)
= 0 and (1 + λ)u′ (ci)− u′

(
cD2
i

)
= 0 for all

i. However, this level of D is not optimal since the compensated derivative is then negative due to the

covariance terms. When we decrease the level of D, there will be a point when some individuals, those

with the highest optimal M , will stop buying private insurance. In the cases of CARA and IARA, these

will be the poorest individuals, while under DARA, this is not necessarily the case. Other individuals,

those with lower levels of optimal M , will still continue insuring themselves on the private market. For

these individuals we will thus still have (1 + λ)u′ (ci) − u′
(
cD1
i

)
= 0 and (1 + λ)u′ (ci) − u′

(
cD2
i

)
= 0,

whereas for those who stop buying private insurance we will now have (1 + λ)u′ (ci)− u′
(
cD1
i

)
> 0 and

(1+λ)u′ (ci)−u′
(
cD2
i

)
> 0. The last two terms of (7) will thus be positive and this might be the optimal

solution if the covariance terms are not too large. On the other hand, it might be optimal to reduce D

even more so that all individuals stop buying private insurance. Thus, we might have the result of no

use of private insurance as in Rochet (1991), but a situation when some individuals insure themselves

privately cannot be ruled out either. It is, however, clear that the social optimum implies a non-purchase

of private insurance at least by some individuals in the society (the poorest ones in the cases of CARA

and IARA). These individuals get more social insurance than they would purchase on the private market.

The reason why our conclusions di�er from those of Rochet (1991) is that we consider a setting where

insurance (both social and private) involves loading costs. Indeed, if we assumed, as Rochet (1991), that

both social and private insurance is actuarially fair, we would also have a de�nite conclusion of no use

of private insurance. To see this, let us suppose for a moment that λ = 0. In that case, the optimal level
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of M for all individuals is zero (i.e. full insurance). If the government provides less than full insurance

(i.e. D > 0), all the individuals insure themselves privately to reach full insurance. However, this is not

optimal from the social point of view since the last two terms at the left-hand side of (7) are then zero

and the �rst two ones are negative. If social insurance is full (i.e. D = 0), the situation is individually

optimal for each individual type and thus nobody needs private insurance. From the social point of view,

the situation is not yet optimal since the last two terms at the left-hand side of (7) are still zero and

the compensated derivative is thus still negative. D therefore has to be reduced even more and becomes

negative, i.e. more than full insurance is provided. It is clear that no private insurance will then be

purchased.10

The key di�erence between the case of λ = 0 and the case of λ > 0 is that in the former, all the

individuals have the same optimal level of M (M = 0), whereas in the latter, the optimal levels di�er

between the types. Therefore, with λ = 0, all individuals stop buying private insurance at the same

level of D and, since the socially optimal D is lower than this level, the resulting outcome is that no

private insurance is purchased. In contrast, with λ > 0, di�erent individual types stop purchasing private

insurance at di�erent levels of D, which implies that if the socially optimal D is not su�ciently low,

some individuals might still �nd it desirable to insure on the private market. Note, however, that such a

situation is only possible if the optimal social insurance is less than full. If the optimal D is equal to zero,

no private insurance will clearly be purchased. Note also that the case for private insurance becomes

weaker if private insurers have higher loading costs than the government.

Let us now look at the Rawlsian case discussed in Section 3.2. Again, using the envelope theorem,

it can be veri�ed that the FOCs of the social planner's problem write in the same way as in the case

without private insurance (equations (9)-(11)). Combining (11) with (10), we have the following FOC

for D:

−π1Nu
′
(
cD1

N

)
− π2Nu

′
(
cD2

N

)
+ u′ (cN ) (1 + λ)(π̄1 + π̄2) = 0 (18)

Let us now evaluate the left-hand side of (18) at the level of D which is exactly equal to type N 's

optimal M . Using (17), we then obtain

u′ (cN ) (1 + λ)(π̄1 + π̄2 − π1N − π2N ) < 0

We thus see that the optimal D is lower than the worst-o� individual's optimal M . This means

that the worst-o� individual will clearly not purchase private insurance. We know from Section 3.2 that

if π1N+π2N

π̄1+π̄2
= (resp. >) 1 + λ, we have D = (resp. <) 0. In these cases, it is clear that all the other

individuals will not buy private insurance either. On the other hand, if π1N+π2N

π̄1+π̄2
< 1 + λ, it might be

that, like in the utilitarian case, some individuals will still insure themselves on the private market.

10Note that in Rochet (1991) insurance is not allowed to be more than full and his result is thus that full public insurance
is optimal, which implies that no private insurance will be purchased.
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5 Conclusion

In this paper we have looked at the design of a social insurance for LTC that consists of a linear payroll tax

(with a demogrant) and of a deductible. We were thus following Arrow's (1963) proposal that an e�cient

way of providing insurance when there are loading costs is to let the insurees pay all the costs below

a given deductible and reimburse them for any expenses above that deductible. We were in particular

interested in exploring how the design of such policy is impacted by a reasonable assumption that income

and the probability of dependence are negatively correlated. In the �rst part of the paper, we assumed

that there was no market for private LTC insurance, whereas we introduced that possibility in the second

part.

We show that the presence of a negative correlation between income and dependence probability

makes the case for social insurance stronger and might trigger a departure from Arrow's theorem in the

sense that, due to redistributional concerns, a zero or even a negative deductible might be optimal despite

the presence of loading costs. The impact of redistributional concerns is particularly clearly seen in the

case of a Rawlsian social welfare function. In that case, a negative deductible becomes optimal as soon

as the ratio between the worst-o� individual's and the population's average probability of dependence

becomes greater than one plus the loading cost.

The introduction of private LTC insurance allows us to compare our results to Rochet (1991) who

shows, in a context without loading costs, that a negative correlation between individual productivity and

the probability of loss implies no use of private insurance. We �nd that this result does not necessarily

hold in our setting involving loading costs. In particular, with a utilitarian social welfare function, we

�nd that the social optimum implies a non-purchase of private insurance at least by some individuals in

the society (these are the poorest individuals under CARA and IARA preferences but not necessarily

under DARA), but a situation when some other individuals insure themselves privately cannot be ruled

out as long as the optimal social insurance is less than full. With a Rawlsian social welfare function,

private insurance is clearly not purchased by the least well-o� individual, while it might be purchased by

some other ones (but also only if social insurance is less than full).
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Appendix A: Utilitarian case without a demogrant

Here we consider a more restrictive version of the utilitarian case presented in Section 3, namely, a policy

in which the government is not able to use a demogrant. The government's problem writes in the same

way as in 3.1 except that we now set A = 0. The FOCs for τ and D also write in the same way as in (4)

and (6). We now de�ne the following compensated FOC:

∂Lc

∂τ
=
∂L
∂τ

+
∂L
∂D

dD

dτ
= 0
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where dD
dτ = (γτ−1)ȳ

(1+λ)π̄1+(1+λ)π̄2
is derived from the budget constraint.

After some manipulations, this FOC can be written as

∂Lc

∂τ
= − [(1 + λ)π̄1 + (1 + λ)π̄2] cov [u′ (c) , y] + ȳcov

[
π1, u

′ (cD1
)]

+ ȳcov
[
π2, u

′ (cD2
)]

+

+ȳπ̄1

∑
ni

[
u′
(
cD1
i

)
− (1 + λ)u′ (ci)

]
+ ȳπ̄2

∑
ni

[
u′
(
cD2
i

)
− (1 + λ)u′ (ci)

]
−

−γτ ȳ
[∑

niπ1iu
′
(
cD1
i

)
+
∑

niπ2iu
′
(
cD2
i

)]
= 0 (19)

Note that for D > L1, equation (19) does not have the second and the fourth terms as well as the

term (1 + λ)π̄1 in the �rst and the term
∑
niπ1iu

′
(
cD1
i

)
in the last brackets.

We can then express the optimal tax rate as

τ =
− [(1 + λ)π̄1 + (1 + λ)π̄2] cov [u′ (c) , y] + ȳcov

[
π1, u

′ (cD1
)]

+ ȳcov
[
π2, u

′ (cD2
)]

γȳ
[∑

niπ1iu′
(
cD1
i

)
+
∑
niπ2iu′

(
cD2
i

)] +

+
ȳπ̄1

∑
ni

[
u′
(
cD1
i

)
− (1 + λ)u′ (ci)

]
+ ȳπ̄2

∑
ni

[
u′
(
cD2
i

)
− (1 + λ)u′ (ci)

]
γȳ
[∑

niπ1iu′
(
cD1
i

)
+
∑
niπ2iu′

(
cD2
i

)] (20)

with the above mentioned terms disappearing for D > L1.

The denominator of (20) is again the e�ciency term which is positive. The numerator, however,

unlike in the case with a demogrant, now takes into account not only the motive of redistribution in the

�rst period (the �rst term which pushes for a higher tax rate) but also the motives of insurance (the last

two terms) and of redistribution in the second period achieved through insurance provision (the second

and the third terms). As discussed in Section 3, the two covariances entering the second and the third

terms are positive and call for increasing insurance coverage (i.e. lowering the deductible), which also

means increasing the tax rate so that this coverage can be �nanced.

To gain somewhat more insight, we can look at the compensated FOC ∂Lc

∂τ evaluated at τ = 0. From

the budget constraint, τ = 0 obviously implies that no insurance coverage is provided, which in other

words means that D is equal to L2. Noting that we are now in the case D > L1 and recalling assumption

(2), we can write

∂Lc

∂τ
|τ=0= −(1+λ)π̄2cov [u′ (c) , y]+ ȳcov

[
π2, u

′ (cD2
)]

+ ȳπ̄2

∑
ni

[
u′
(
cD2
i

)
− (1 + λ)u′ (ci)

]
> 0 (21)

Equation (21) tells us that the optimal tax rate is τ > 0, which also implies that the optimal deductible
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D is lower than L2, i.e. it is desirable to provide social LTC insurance. We can also note that the

heterogeneity of individuals makes the case for social insurance stronger. Indeed, even if assumption (2)

was not satis�ed and the third term of (21) was negative, it could still be possible to have D < L2 if

the covariance terms are large enough. In other words, even if providing LTC insurance is ine�cient

from a pure insurance point of view, there may still be a case for social insurance due to redistributional

concerns. Note also that in this case without a demogrant social insurance may be justi�ed even in the

absence of a negative correlation between income and dependence probabilities (i.e. with the second

covariance being equal to zero).11 To some extent insurance now also plays the role of a demogrant since

taxes are collected proportionally to income but insurance provision is the same to everyone. Introducing

a positive tax and using the proceeds to �nance social insurance thus enhances redistribution, as re�ected

by the �rst term of (21).

Appendix B: Optimal deductible in the Rawlsian case

We are now going to show that the optimal deductible in the Rawlsian case decreases when the probability

ratio π1N+π2N

π̄1+π̄2
goes up. To do this, let us �rst note that the ratio π1N+π2N

π̄1+π̄2
can increase when π1N and/or

π2N increases (and the increase in π̄1 + π̄2 is su�ciently small) or when π1N and π2N remain the same

but the probabilities of other individuals decrease implying a decrease in π̄1 + π̄2. We look at these two

cases.

For the �rst case, we assume for simplicity that π1N increases while π2N and the sum π̄1 + π̄2 remain

the same (i.e. we assume that the probabilities of some other individuals decrease in such a way that

π̄1 + π̄2 remains unchanged). We therefore need to verify how the optimal deductible changes due to the

increase in π1N . From (12) we obtain:

∂D

∂π1N
=
−(1 + λ) (π̄1 + π̄2)u′(cIN ) + u′

(
cD1

N

)
[(1 + λ) (π̄1 + π̄2)− 1]

−SOCD
< 0 (22)

Turning to the case when π1N and π2N do not change but π̄1 + π̄2 decreases, we get

− ∂D

∂ (π̄1 + π̄2)
=
−
[
(1 + λ) (1− π1N − π2N )u′(cIN ) + (π1N + π2N )u′(cD1

N )(1 + λ)
]

−SOCD
< 0 (23)

11This is not true in the case with a demogrant. Indeed, if assumption (2) does not hold and there is no correlation
between income and dependence probabilities, evaluating (7) at D = L2 we �nd that decreasing D is never optimal.
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Appendix C: Comparative statics in the individual problem with

private insurance

In this appendix, we derive the comparative statics of individual savings si and the e�ectively faced

deductible Mi (chosen simultaneously) with respect to income yi and the probability of dependence π1i

(the case of π2i is analogous).

Fully di�erentiating (17) and (1) with respect to yi, we get respectively

(1 + λ)(π1i + π2i)u
′′(ci)(1− τ)− ∂si

∂yi

[
(1 + λ)(π1i + π2i)u

′′(ci) + π1iu
′′(cD1

i ) + π2iu
′′(cD2

i )
]

+

+
∂Mi

∂yi

[
(1 + λ)2(π1i + π2i)

2u′′(ci) + π1iu
′′(cD1

i ) + π2iu
′′(cD2

i )
]

= 0 (24)

and
∂si
∂yi

[
u′′(ci) + π1iu

′′(cD1
i ) + π2iu

′′(cD2
i ) + (1− π1i − π2i)u

′′(cIi )
]
−

−∂Mi

∂yi

[
(1 + λ)(π1i + π2i)u

′′(ci) + π1iu
′′(cD1

i ) + π2iu
′′(cD2

i )
]
− u′′(ci)(1− τ) = 0 (25)

For ease of exposition, let us de�ne the following:

[1] ≡
[
(1 + λ)(π1i + π2i)u

′′(ci) + π1iu
′′(cD1

i ) + π2iu
′′(cD2

i )
]
< 0,

[2] ≡
[
(1 + λ)2(π1i + π2i)

2u′′(ci) + π1iu
′′(cD1

i ) + π2iu
′′(cD2

i )
]
< 0,

[3] ≡
[
u′′(ci) + π1iu

′′(cD1
i ) + π2iu

′′(cD2
i ) + (1− π1i − π2i)u

′′(cIi )
]
< 0.

Solving the system of equations (24) and (25) for ∂Mi

∂yi
and ∂si

∂yi
, we obtain

∂si
∂yi

=
u′′(ci)(1− τ) [[2]− [1] · (1 + λ)(π1i + π2i)]

[3] · [2]− [1]
2 > 0

and

∂Mi

∂yi
=
−u′′(ci)(1− τ) · [4]

[3] · [2]− [1]
2

where
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[4] ≡
[
(1 + λ)(π1i + π2i)(1− π1i − π2i)u

′′(cIi )− (1− (1 + λ)(π1i + π2i))
(
π1iu

′′(cD1
i ) + π2iu

′′(cD2
i )
)]
.

It can be veri�ed that [2]− [1] · (1 + λ)(π1i + π2i) < 0 and [3] · [2]− [1]
2
> 0, from which the sign of

∂si
∂yi

then follows immediately. On the other hand, the sign of ∂Mi

∂yi
depends on the sign of [4]. The sign of

[4] is, however, ambiguous in the general case and di�ers depending on the absolute risk aversion (ARA)

exhibited by the utility function. In particular, we are now going to show that [4] > 0 under decreasing

absolute risk aversion (DARA), [4] < 0 under increasing absolute risk aversion (IARA) and [4] = 0 under

constant absolute risk aversion (CARA).

To see this, let us �rst note that DARA (resp. IARA and CARA) means that

ARA(c) =
−u′′(c)
u′(c)

< (resp. > and =) ARA(d) =
−u′′(d)

u′(d)
for c > d,

where −u
′′(x)

u′(x) is the Arrow-Pratt measure of absolute risk aversion at wealth x.

Thus, noting that withMi > 0, we have cIi > cD1
i , under DARA (resp. IARA and CARA) preferences

we can write
−u′′(cIi )
u′(cIi )

< (resp. > and =)
−u′′(cD1

i )

u′(cD1
i )

⇐⇒

u′′(cIi ) > (resp. < and =)
u′′(cD1

i )

u′(cD1
i )

u′(cIi )

We can then multiply both sides by (1 + λ)(π1i + π2i)(1 − π1i − π2i) and subtract from both sides

(1− (1 + λ)(π1i + π2i))
(
π1iu

′′(cD1
i ) + π2iu

′′(cD2
i )
)
, which gives

(1 + λ)(π1i + π2i)(1− π1i − π2i)u
′′(cIi )− (1− (1 + λ)(π1i + π2i))

(
π1iu

′′(cD1
i ) + π2iu

′′(cD2
i )
)

> (resp. < and =)
u′′(cD1

i )

u′(cD1
i )

[
u′(cIi )(1 + λ)(π1i + π2i)(1− π1i − π2i)−

− (1− (1 + λ)(π1i + π2i))
(
π1iu

′(cD1
i ) + π2iu

′(cD2
i )
) ] = 0 (26)

where we have used the fact that cD1
i = cD2

i and that the expression in the last big bracket is equal

to zero (this follows from combining (17) with (1)).

The left-hand side of inequality (26) is exactly the de�nition of [4] ; we therefore indeed have that

under DARA (resp. IARA and CARA), [4] > (resp. < and =) 0. Coming back to ∂Mi

∂yi
, we can thus

conclude that ∂Mi

∂yi
> (resp. < and =) 0 with DARA (resp. IARA and CARA) preferences.

Fully di�erentiating (17) and (1) with respect to π1i, we get respectively
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∂Mi

∂π1i
· [2]− ∂si

∂π1i
· [1]− (1 + λ)2(π1i + π2i)u

′′(ci)(D −Mi) = 0 (27)

and

∂si
∂π1i

· [3]− ∂Mi

∂π1i
· [1] + (1 + λ)u′′(ci)(D −Mi) + u′(cD1

i )− u′(cIi ) = 0 (28)

Solving the system of equations (27) and (28) for ∂Mi

∂π1i
and ∂si

∂π1i
, we obtain

∂si
∂π1i

=
[2] ·

[
u′(cIi )− u′(c

D1
i )
]

[3] · [2]− [1]
2 +

(1 + λ)u′′(ci)(D −Mi) · [2] · [4]

[1] ·
[
[3] · [2]− [1]

2
] > 0 (resp. ≶ 0)

under CARA and IARA (resp. under DARA),

and

∂Mi

∂π1i
=

[1] ·
[
u′(cIi )− u′(c

D1
i )
]

[3] · [2]− [1]
2 +

(1 + λ)u′′(ci)(D −Mi) · [4]

[3] · [2]− [1]
2 > 0 (resp. ≶ 0)

under CARA and IARA (resp. under DARA).
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