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Abstract

This paper addresses conflicting results regarding the optimal taxation of capital income. Judd (1985)
proves that in steady state there should be no taxation of capital income. Lansing (1999) studies a logarithmic
example of one of Judd’s models and finds that the optimal steady state tax on capital income is not always
zero — it is positive in some specifications, negative in some others. There appears to be a contradiction.
However, I show that Lansing derives his result by relaxing the hypotheses of Judd’s theorem — with less
restrictive hypotheses, a wider range of outcomes is possible. This raises the question of whether yet more
outcomes are possible with yet weaker hypotheses. I find that the answer is no: the only possible interior
steady states for the model are essentially Judd’s zero capital tax and Lansing’s unitary elasticity of marginal

utility.
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1 Introduction

Chamley (1986) and Judd (1985) prove that capital income should not be taxed in a steady state. Lans-
ing (1999) provides a counterexample to this result. The example is particularly intriguing since it is a
special case of one of Judd’s models. There appears to be a contradiction. Lansing offers explanations to
reconcile the differences. He also considers extensions of the model that revive the zero tax result. However,
one is still left wondering what goes wrong in the counterexample. Lansing states on page 449, “Future
research should be directed at developing a solution method that gives the right answer in all cases.” Judd’s
solution method is optimal control theory (as is Lansing’s). It would be very troubling indeed if optimal
control theory failed to give the right answer. Fortunately, the contradiction can be resolved: Judd and
Lansing have proved two different theorems with two different sets of hypotheses. For the special case with
logarithmic utility that Lansing considers, his theorem’s hypotheses are less restrictive than Judd’s so the
range of possible outcomes is wider. In particular, Judd’s zero capital tax result is one possible outcome,
but not the only one.

The hypotheses in question deal with the convergence properties of various co-state variables (Lagrange
multipliers). Kemp, Long, and Shimomura (1993) have also observed that the convergence hypotheses of
Judd’s theorem might not be satisfied. Among the possibilities is that the steady state of the economy could
be completely unstable in which case the zero capital tax result may not apply. In Lansing’s example it
turns out that there is a somewhat different reason why Judd’s result does not apply. The issue is not the
local dynamics about the steady state, but rather the dynamical system might not even have a steady state.
Further work regarding the convergence properties has been done by Straub and Werning (2015). They state,
“Reinhorn ... correctly clarified that in the logarithmic case the Lagrange multipliers explode, explaining
the difference in results” between Judd (1985) and Lansing (1999). Straub and Werning (2015) also state,
“[W]e believe the issue can be framed exactly as Reinhorn ... did, emphasizing the non convergence of
multipliers.”

Since the co-state variables/multipliers are shadow prices that are not observable, one would rather
not make assumptions about their behavior. On the other hand, it is quite reasonable to assume that
observable macroeconomic variables have stable long run behavior since this is consistent with most developed
economies. (E.g., page 304 of Lucas 1990 for the US.) In the case of Judd’s model, which abstracts from
demographics and technological change, stability boils down to convergence to an interior steady state. Thus,
I study the behavior of the optimal tax on capital income, assuming only that the observable macro variables

converge to positive limits, with no assumptions about co—statesﬂ I find that there are only two possible

IThroughout the paper, the theorems’ hypotheses will be stated in terms of the convergence of endogenous variables. The
theorems do not characterize the primitives (utility functions, production function, parameters, initial condition) that satisfy
convergence. Some primitives will satisfy Judd’s hypotheses, some will satisfy Lansing’s, and some neither. However, as
discussed above, it seems reasonable to focus on those primitives that lead to stable long run behavior.



outcomes: either the modified golden rule holds in the limit or else savings are insensitive to the after-tax
interest rate in the limit. In the former case we get Judd’s zero tax result. In the latter case, the income
and substitution effects of an interest rate change just cancel, and this is what occurs in Lansing’s example
with logarithmic utility. If interest does not affect savings, this undermines the benefit from a zero tax on
interest/capital income and we can see why Judd’s result does not necessarily hold in this case.

Straub and Werning (2015) raise serious concerns about Judd’s convergence hypotheses in the case where
the capitalist in the model has CES utility. In particular, when the capitalist’s intertemporal elasticity of
substitution is less than one, the solution to the optimal tax problem cannot converge to an interior steady
state. If, in addition, the social welfare function places zero weight on the capitalist and all weight on the
worker, then the solution to the optimal tax problem does converge, but to a non-interior steady state with
a positive tax rate on capital income. Straub and Werning conclude that Judd’s model cannot be used to
unequivocally justify a zero long run tax on capital income. I agree with Straub and Werning. But since the
CES case with elasticity less than one leads to a non-interior steady state, and since this is inconsistent with
stable long run behavior, I prefer to exclude these utility functions from consideration and instead focus on
utility functions (and other primitives) that do lead to stable long run behavior.

Section 2 presents the model. Section 3 presents the theorems of Judd and Lansing, explains the rela-
tionship between these two theorems, and also provides the general result described above. Section 4 offers

a concluding comment.

2 Model

The model has four economic actors: capitalist, worker, firm, government. The capitalist has access to the
capital market but does no work. The worker supplies labor inelastically but does not have access to the
capital market. The firm is a price taking profit maximizer that uses capital and labor to produce output.
The government chooses a time path for the tax rate on capital income and uses the proceeds to provide
lump sum transfers to the worker. There is no government debt. Hence the transfers must equal the taxes
at each point in time. We now proceed to describe the model in detail.

The capitalist has an infinite horizon and maximizes discounted utility, fooo e~ Plu(c§)dt, where p > 0
is the subjective discount rate and ¢f > 0 is instantaneous consumption. The superscript identifies the
capitalist; ¢’ will be the worker’s consumption. The instantaneous utility function v is smooth, strictly
increasing, strictly concave, and satisfies Inada conditions. At the beginning of time the capitalist’s wealth
consists of the economy’s entire stock of capital, kg > 0. This stock of wealth/capital evolves through time
according to the capital accumulation equation: k; = (1 — 7pe)(re — 8)ks — ¢ where Ty, is the tax rate on
net capital income (subsidy rate if negative), r; is the pre-tax interest rate gross of depreciation, and § is the

depreciation rate. Note the lack of wage income which reflects the assumption that the capitalist supplies no



labor. For ease of notation, let 7 := (1 — 74 )(r: — §) denote the after tax, net of depreciation, interest rate.
Then the capital accumulation equation is l%t = Tiky —cf. Let R, = fg 7sds be the cumulative interest factor.
With this definition we can integrate the capital accumulation equation to get e Brlr—ky = — fOT e~ fir cidt.
When T — oo this equation gives the capitalist’s lifetime budget. In order to prevent Ponzi schemes we will
require that the present value of wealth be non-negative in the limit: limp_ e~ Br k7 > 0. Then the lifetime
present value budget constraint is fooo e*thfdt < ko. The capitalist maximizes lifetime utility subject to
this budgetﬂ At the solution, the intertemporal marginal rate of substitution must equal the ratio of present

value prices, and the budget must hold with equality:

e P! (¢§) ' (c§) = e~ B and /OO e Bectdt = k. (1)
0
Equivalently, the first of these conditions can be log differentiated to give the consumption Euler equation
éeu’ (¢§) Ju/ (¢5) = p—7¢. The second equation in (1)) can be expressed in its no-Ponzi form as lim;_, . e~ Rk, =
0, or, by the first equation in (1)), limy—oc e =P’ (c§) ks = 0.

The worker inelastically supplies a flow of one unit of labor and immediately consumes all wages and
transfers due to the lack of access to the capital market. So the worker is a passive actor who makes
no decisions. The instantaneous utility function is v(c}”). The worker’s consumption (and income) is ¢}’ =
wy+TR; where w; is the wage and TR; is the transfer. The assumptions that were imposed on the capitalist’s
utility function w are also imposed on v.

The firm is a price taking profit maximizer with constant returns to scale in labor and capital. The
production function in intensive form is f(k:). The capital to labor ratio coincides with the capital stock
since the labor supply is always one unit. We assume that f(0) = 0 and that f satisfies the same conditions
as the utility functions u and v. At the firm’s optimum, f'(k;) = r; and f(k;) — ke f' (k) = wy.

Given the restriction against government debt, tax revenue must equal the transfer at each instant:
Tre(re — 0)ky = TR;. Hence, from the definition of 7; and the firm’s profit maximization condition, TR; =

—7iky + [f'(ki) — 0)kt. Then the worker’s consumption is
e =wy + TRy = [f(kt) — ko f' (ke)] — Tieke + [f' (ko) — 0lky = f (ki) — Oky — Tiky. (2)

In equilibrium, consumption plus investment must equal output: ¢f + ¢}’ + ok + ky = f(kt). Substitute

for ¢ to get k; = 7yky — c§, which is satisfied by the capitalist’s flow budget constraint (Walras’ Law).

3 Optimal taxation

The government maximizes social welfare [~ e [yv(c{’) + (1 — v)u(c§)]dt subject to the equilibrium con-

ditions: the capitalist maximizes lifetime utility, the worker consumes all available income, firms maximize

2Throughout, control variables in optimization problems are required to be piecewise continuous functions of ¢. This includes
7+ since it is the control for the optimal taxation problem in section @below.



profits, the government’s budget is in balance at every instant so the worker’s income is as described in ,
and markets clear. Note that the government applies the capitalist’s discount factor to both consumers, and
the welfare weight ~ is time invariant. There is one further constraint: 7, > 0. This is a policy restriction
that prevents the government from imposing a tax rate in excess of 100 percent. And there are two further

assumptions implicit in the analysis of Judd (1985):

e The initial stock of capital satisfies f(ko) — dko > 0. Without this, the worker’s initial consumption
in would not be positive.

e The policy 7y = 0 does not solve the optimal taxation problem. This requires some background. In
nonlinear programming the Fritz John necessary conditions allow for the possibility that the Lagrange
multiplier of the objective function equals zero. But if a constraint qualification is satisfied this La-
grange multiplier can be set equal to one and we get the Kuhn—Tucker necessary conditions. For
optimal control we follow Seierstad and Sydsaeter (1987, p. 86) and say that a solution to the Pontrya-
gin necessary conditions is abnormal if the multiplier of the objective function equals zero. For the
optimal taxation problem here, the appendix shows that the only abnormal solution is 7z = 0. If this
is not optimal (by assumption) then any time path that is optimal must be a normal solution. IL.e., the
multiplier of the objective function is not zero, and it can be set equal to one by normalization, as we

do below.

One may feel uncomfortable with the assumption that 7; = 0 is not optimal. It would be better not to
impose an assumption on an endogenous policy variable. The appendix provides two assumptions on
the model’s primitives (initial conditions, utility functions, etc) under which we can prove that 7 =0

is not optimal. Unfortunately the derivation is quite tedious.
Substitute for ¢’ from (2)) to get the following problem:
maximize / e o (f (k) — ks — o) + (1 — y)u(c)]dt
0
subject to fct =Tk —cf
¢ = (p—reu'(cf)/u"(c)
7t >0

with kg > 0 given and lim;_o e ?"u/(¢§)k; = 0. The optimal time path for the tax rate can be recovered

from the definition of 7 := (1 — 74)(ry — §) with r; = f/(kt). The current value Hamiltonian is

H(k,c* 7, q1,q2,m) = y(f(k) — 6k — 7k) + (1 — y)u(c®) + q1(7k — ) + q2(p — P)u' () Ju" () + 7.



The state variables are k; (with co-state ¢i:) and ¢§ (with co-state got), 7+ is the control, and 7, is the

Lagrange multiplier for the constraint 7, > 0. The following conditions are necessary for optimality:

OH/Ok = ~v'(c¢")[f (ki) — 0 — 7] 4+ queTe = pque — i (3a)
OH[oc® = (1= (cf) = que + qaelp — ) {1 — [u"(c))] 720/ (c§)u" () } = paze — G (3b)
OH/Oor = —yv'(cf’)ke + queke — qaett’(cf) /u" (cf) + 1, = 0 (3¢)
OH/dq1 = TFiky—c§ =k (3d)
0H/0qy = (p—ro)u'(c)/u"(cf) = ¢ (3e)
ny 20, nre=0, ga=0 (3f)

together with the problem’s two boundary conditions. The last line includes the complementary slackness

and transversality conditions

3.1 Theorem (Judd)lﬂ Suppose a solution to (3) has the property that ki, c§, T, and q1¢ converge ast tends

to infinity, with strictly positive limits for ki, ¢f, and ¢}’. Then limy_ oo Tre = 0.

Proof Drop the time subscripts to denote limiting values. From (3e)E| 7 = p. Therefore (3a) yields
f'(k) =6 — 7 =0. The theorem now follows from the definition 7, = (1 — 74;)[f' (k) — 6]. m

In Lansing’s example, u = log. Then simplifies to ¢ = cSeff*=rt and c§ = pko. From (3d),
dle™Beky]Jdt = —e Becg, so with ¢¢ = pkoeft—rt this yields d[e Btk,]/dt = d[koe*!]/dt. Integrate, and

use Ry = 0 to identify the constant of integration. The result is k, = kOeRt_pt. Hence cf = pk;. Substitute

3The appendix provides a derivation of these necessary conditions. For a finite time horizon T, the transversality conditions
would be g20 = gar = 0. With an infinite time horizon, g20 = 0 continues to be necessary for optimality. Regarding
the necessity of the transversality condition at infinity (TVCoo) for continuous time models, see Halkin (1974) for an early
treatment. Kamihigashi (2001) generalizes much of the previous literature on this topic. However, Kamihigashi’s (2001) results
are not applicable to the optimal taxation problem here. In particular, if we express the problem here in reduced form, the
constraint set for (kt,cf,kt,éf) has an empty interior, and this violates assumption 3.1 of Kamihigashi (2001). The TVCoo
may still be necessary for optimality, but we cannot use Kamihigashi’s (2001) theorem to reach this conclusion. Fortunately
this has no bearing on the main results here. Judd’s theorem, Lansing’s theorem, and theorem 3.6 below remain true whether
or not the TVCoo is included among the necessary conditions.

4See theorem 2 and equations (24) on page 72 of Judd (1985).

5The assumption that limi— oo &, exists does not always imply lims— o ft = 0 (e.g., t~'sint?). However, this is not a
problem here. Equations (3a, d, e¢) are of the form ét = G(k¢, ¢, Tt,q1¢) with G continuous, where ét represents g, ki, or 5.
Therefore, under stated assumptions, ét has a limit as ¢ tends to infinity. That limit must be zero; otherwise &, (no dot) would
fail to converge as t tends to infinity. A similar argument can be applied to Lansing’s theorem, and to parts of theorem 3.6,
below.



this and u = log into (3) to get:

OH/Ok = ~v'(c¢f')[f (k) — 6 — 7] + queTe = pqie — Gue (4a)
OH/0c® = (1 —=7)/(pkt) — qe — q2t(p — Tt) = pqar — ot (4b)
OH/or = —yV'(c)ks + queke + qoipks +m, =0 (4c)
OH/Bq1 = Tiky — phy = ky (4d)
OH[dgy = —(p—Ti)pks = phi (4e)
ne =0, M7t =0, g2 =0. (4f)

This system characterizes the solution to the optimal tax problem when v = log. One of the properties
of (4) is that generically lim; o0 (kt, c§, 7+, g1¢) does not exist. Le., it may be that some of these variables
converge, but in general they cannot all converge. Thus, for this special utility function the hypotheses
of Judd’s theorem generically cannot be satisfied. The reason is as follows. If all these variables were to
converge, the proof of Judd’s theorem would apply so in the limit 7 = p (hence n = 0) and f/(k) = 0+ p. The
latter condition would uniquely determine k (modified golden rule). Then, from (4c), go; would converge
and its limit would satisfy yv'(¢") = g1 + pge. Also, in the limit, (4b) would yield (1 —~)/(pk) = q1 + pgo.
Hence (1 —v)/(pk) = vv'(c*) = ' (f(k) — 6k — pk), where the last equality uses . This would impose
a second condition on k, in addition to f’(k) = + p. Only in exceptional cases will the same value of k
satisfy both these conditions. Generically there will be no k that satisfies both. Nonetheless, (4) is still valid
— it still characterizes the solution to the optimal tax problem when u = log. The fact that (generically)
its variables do not all converge is neither here nor there.

Given the simplifications associated with u = log, Lansing states directly the optimal tax problem for
this special case:
maximize /OO e Py (f (ki) — 0ky — Tiky) + (1 — ) log(pky)]dt
0

subject to ky = (7t — p)ky
74 >0
with kg > 0 given. The ¢f equation is dropped because it is redundant. Thus the ky equation has a dual role.

Not only is it the capital accumulation equation; it is also the consumption Euler equation for the capitalist.

The current value Hamiltonian is H(k,7,qs,n) = yv(f(k) — 6k — k) + (1 — ) log(pk) + q3(F — p)k +nF. The



following conditions are necessary for optimality:

OH/0k = W(c')[f'(ke) =0 — 7] + (L —7)/ke + (7 — p) = pase — Gt (5a)
OH/or = —y'(c)kt + q3ike + 1, =0 (5b)
OH/dqs = (s — p)ke = ky (5¢)
7, >0, nm=0 (5d)

with kg > 0 given. In Lansing (1999), this appears as (21) on page 435. Note the new notation gs; for the
co-state here in (5). Since the kt equation has a dual role here so does its co—stateﬁ Indeed g3, is distinct
from both of the co-states in (4), q1+ (for capital) and go; (for the capitalist’s consumption). However, they

are related to one another.

3.2 Lemma Let u = log. Equations (4) and (5) are equivalent, with

g3t = qutt+ pqat (6)
t
kigie = (1 =)t + kigs — ,0/ ksqzsds (7)
0
t
kigae = —(L=)t/p+ / ksqssds. (8)
0

Proof First, given a solution to (4), verify that (5) is satisfied when gs; is defined by (6). From (4a),

V' () f (ki) =0 =7 = (p—Te)que — que
= (p—7t)(g3t — pgzt) — (g3t — pdar) by definition of gz
= (p—=T7t)as — dae — (L =) /ke + paue + p°gac by (4b)
= (p—Te)gst — st — (1 =) /ke + pga; by definition of gs;.

So (ba) is satisfied. Clearly (5b) follows from (4c), (5¢) follows from (4d), and (5d) follows from (4f). This
completes the verification of (5).
Next, given a solution to (5), verify that (4) is satisfied when ¢+ and go; are defined by and . Take
the time derivative of (7)):
fevque + kedre = 1= + kgse + kedse — phgse.

6Cf Lansing (1999) where the same notation g1 is used for the dual role co-state in (21) on page 435 and also for capital’s
co-state in (17) on page 432 where utility is not restricted to be logarithmic.



Substitute for & from (5c) and substitute for gs; from (5a):

(Te — p)kequs + kedue
= 1=+ (7t — pkease + ke {—v0"(c)[f' (k) = 0 — 7] = (1 =)/ — q3¢(Fe — p) + pgse} — pkegae-

Simplify and divide by k; > 0 to get (4a). Take the time derivative of :

iftQ2t +kigor = —(1—7)/p+ kegse.

Substitute for k; from (5¢). We can also substitute for kygs;: take (7) and add to it p times to get

kiqis + pkiqgor = kiqss. After these substitutions we have

(Fr — p)keqar + kedor = —(1—7)/p+ keque + pkigos.

Divide by k; > 0 to get (4b). Since we have just shown that @ and vield kiq1: + pkigor = kiqae,
(4c) follows from (5b). Clearly, (4d) and (4e) follow from (5¢c). Finally, (4f) follows from (5d) and (§). In

particular, yields o9 = OE| ]

3.3 Theorem (Lansing)ﬂ Let uw = log. Suppose a solution to (5) has the property that ki, 7+, and qst
converge as t tends to infinity, with strictly positive limits for ki, ci’, and f'(ki) — 0. Then, dropping the
time subscripts to denote limiting valuesﬂ sgn(7y) = sgn(pyv'(c¥)k — 1+ 7).

Proof From (5¢), ¥ = p. From (5b), g3 = vv'(¢") since n = 0 (¥ > 0) and k > 0. Therefore, (5a) yields
' () [f' (k) — 6 — 7] = pyv'(¢*) — (1 —v)/k. The theorem now follows from 73 = (1 — 75¢)[f' (k) — 5]. m

Judd’s hypotheses are more restrictive than Lansing’s. That is, in (4) Judd’s hypotheses are that k¢, ¢, 7,
and ¢ all converge. Recall that generically this does not happen, but when it does, (1 —~)/(pk) = yv'(c*).
So in this special case Lansing’s theorem yields 75 = 0 in the limit, just like Judd’s theorem: When u = log,
Judd’s theorem is a special (and exceptional) case of Lansing’s.

Furthermore, when Judd’s hypotheses are satisfied, go; also converges by (4c). Hence, by @, g3t con-
verges in (5). So Lansing’s hypotheses are satisfied. L.e., when v = log Judd’s hypotheses imply Lansing’s
hypotheses. The converse does not necessarily hold. It is possible for g3; to converge while g1, and gof

diverge. The following corollary states this formally.

TWith u = log, the lemma’s equivalence result has the following consequence. In (4), q1¢ and g2¢ affect the real allocation
only through the value of g1t + pg2:. Hence, at any time ¢ > 0 we can reset the value of ga; to zero and reset the value of g1¢ to
limg1¢(q1s + pg2s). Thereafter, the future evolution of g1 follows (4a) and g2 follows (4b) and so the future values of q1 + pg2
are exactly as they were before the change. This has no effect on the real allocation. The ability to reset g2: to zero at any
point in time, without real consequence, tells us the optimal taxation problem is dynamically consistent when u = log.

8See proposition 2 on page 435 of Lansing (1999).

9For some intuition, since u = log and c® = pk, the result here can be expressed as sgn(7y) = sgn(yv'(c¥) — (1 — y)u/(c?)):
redistribution goes in favor of the consumer with the larger welfare-weighted marginal utility of consumption.

10



3.4 Corollary Let u = log. Suppose a solution to (5) has the property that ki, Tr, and q3: converge as t
tends to infinity, with strictly positive limits for k¢, ¢, and f'(ks) — 6. Then, in (4),

Jim g/t = (1= —pkgs)/k = (1=7)/k—py'(c")

Jim g/t = (=(L=7)/p+kas)/k = —(1=7)/(pk) +yv'(c")

where k = limy_. o ke, ete. So if pyv'(¢¥)k # 1 — ~ then both qi¢ and qor fail to converge. Since sgn(ty) =
sgn(pyv'(c¥)k — 1 +v) from theorem 3.3, it follows that if T, # 0 then g fails to converge so Judd’s
hypotheses are not satisfied.

Proof In @ and , apply 'Hopital’s rule to the integrals divided by ¢, and use g3 = vv'(c*) from the

proof of theorem 3.3. =
The following example rigs the initial conditions and parameter values to illustrate the corollary.

3.5 Example Let u =log. Suppose
Y (e f (ko) =6 —2p] + (1 =) /ko =0 where cff := f(ko)—ko—pko >0 & 0< f'(ko)—6#p. (9)

Then the following solves (5): ki = ko, 7+ = p (hence n, = 0), ¢’ = ¢, and g3; = Yv'(cf). So Lansing’s
hypotheses are satisfied. From @ and (8)), q1¢ = gzo+ ((1—7)/ko — pgso)t and g2 = — ((1—7)/ko — pgso)t/p,
with gzo = yv'(cf). So, from @D, q1t and ¢o; do not converge. The tax rate on capital income is not zero:

Trelf (ko) = 0] = f'(ko) =0 —p#0. m

Return now to the general case (3) when the capitalist’s utility is not necessarily u = log. As stated
in the introduction, the focus of attention is time paths for which the observables ki, c§, 7+ converge to
positive limits as ¢ tends to infinity. Thus, for ¢ sufficiently large the observables are approximately time
invariant. To gain some insight we will temporarily take this approximation to the extreme: suppose that
for all t > T, (k,c§,7) = (k,c°, 7). Although a time invariant path does not in general solve the optimal
taxation problem, we will use this approximate solution to derive some implications. This will shed light on
the limiting behavior as ¢ — oo for the true optimum which we will then analyze rigorously in theorem 3.6.

If a solution to (3) were to satisfy (k:,c§,7:) = (k,c,7) for all t > T with ¢® > 0 and k > 0, then 7 = p
from (3e) and ¢ = pk from (3d). Also for all t > T, ¢’ = ¢* = f(k) — 6k — pk from (2)); assume this is
positive. From (3a), q1t = q17 — Y0’ (¢*)[f'(k) =6 — p](t = T) for all ¢t > T. Then from (3c) (with n, = 0 for
all t > T since 7y = p), qor = ku" (pk)[u/ (pk)] " Haqr — ' (c®) — ' () [f'(k) =0 — p](t —=T)} for all t > T.
All that remains is (3b), which reduces to (1 — v)u/'(pk) — g1t = pgar — Goi for all ¢ > T. With the above

solutions for ¢i; and g9 this requires that the coefficients of ¢ match up:
70" () [f' (k) = & — p] = —pku" (pk)[u' (pk)] 7' () [f' (k) = 6 = p]

11



hence

! () (k) — 6 — pl[L+ pku (pk) /2 (pk)] = 0. (10a)

It also requires (1 —)u'(pk) — i1 = pgor — Gor
(1 =)' (pk) — qir = pku (pk)[u/ (pk)] ™~ grr — ' (¢*)] + ku” (pk) [ (pk)] 0" () [f' (k) — 6 — p]

hence
qrr[L + phu (pk) fu/ (o)) = (1 = y)et'(pk) — ke (pk)[u' (k)] ~ 3 ()[f'(k) =5 — 2. (10b)

The solution to (10a) and (10b) requires one of the following alternatives:

(i) f'(k) = p+ 6 and pku”(pk)/u'(pk) # —1;
(ii) pku”(pk)/u'(pk) = —1 and p(1 — y)u'(pk) = —y'(c*)[f' (k) — 0 — 2p].

In each of these, the first condition ensures that (10a) is satisfied, while the second ensures that (10b) is
satisfied. In particular, in (i) the second condition allows us to find a unique value for ¢, that satisfies (10b).
In (i), the capital tax is zero whereas in (ii), the capital tax is not restricted to be zero. Lansing’s example
with u = log is an instance of alternative (ii): the first condition in (ii) is satisfied identically and the second
condition determines the value of k. (Le., it determines the value of k£ that would lead to a time invariant
path.) When u # log, alternative (ii) would impose two distinct restrictions on k making it unlikely to have
any solution. Thus, other than u = log, alternative (ii) can be effectively dismissed and this leaves us with
alternative (i) — zero tax on capital income.

These results for the time invariant approximation lead us to the following theorem for the limiting

behavior of the optimality conditions (3).

3.6 Theorem Suppose a solution to (3) has the property that ki, c¢§, and 7y converge as t tends to infinity,
with strictly positive limits for ki, c§, and ¢i. Then limy_, oo Tre = 0 or limy_, oo [c§ + ' (c§)/u”(c§)] = 0 or

both.

Proof Use (3a) to substitute for ¢i; and use (3e) to substitute for ¢ to get the following:

d qe ] _ dque  quu'(cf)éf () (k) — 0 — 74
] | .

o) W) w'(cf)
Then from the mean value theorem, for all ¢ > T there exists s € [T, ¢] such that

dt

e/ (c§) = qir /u'(cg) — (t = Ty ()]~ o' (e)If' (k) — 6 — 7). (12)

Under the convergence hypotheses, we can choose T sufficiently large so that [u/(c$)] 2/ (c?)[f (ks) — 0 — 7]

is arbitrarily close to lim; o ([u’(cf)]_1 V' (e)f (k) — 0 — m). Then yields limy oo [t~ tqre /0 (c§)] =
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—ylimy— o ([u'(cf)]_1 V() f (k) — 6—ft]). Now consider the limiting behavior of go;. Since lim;_,o, 7 = p

from (3e), we have n, = 0 for all ¢ sufficiently large from (3f). Then from (3c), lim_ o [t~ gasu/(c§) /u” (c§)] =
limtﬁoo[tflqltkt]. Since the limit of a product is the product of the limits, we can summarize our results

thus far:

ktu” (C?) !

i 2 — ot ()~ 6 - d) & Jim 22— i (P i) 5 - ).

Use (3b) to substitute for ¢ and use (3e) to substitute for ¢f to get the following:
A [egl ()] | —pe () e il (c) W ()] .
de | u(ef) w(c) w(c) () 1
)
u(cf)
Integrate over [t,00) and use the previous result that gz = O(t) as t — oo:

[/ (c))?

u(c5)

+e g [1 -

[qe/u'(cf) — 141

—e g (cf) /u”(cf) = /tc><> e’ [g16/0/ () = 1+ 7lds. (13)

In preparation for applying integration by parts to , let 2z, == [ e Po[u/(c9)]?[u"(c¢))~'ds. From
I'Hopital’s rule, lim;_, oo [2¢/e7P!] = limy_, oo [/ (c§)]?[pu” (¢§)] 1. This will be useful later. From ,

%[qu/u’@?) — 149] = =l ()] ()f (ke) = 6 — 7],

We can now express as follows after applying integration by parts to the right side:
oo o0
P D) = [~adaa/u () = 1] =y [ ) () 6 - rlds
t

= g/ () — 1] — 7 / ()] () (k) — 6 — 7.

The second line follows from the limiting behavior of z; and from ¢1; = O(t) as t — oco. Use this equation

to substitute for goru’(c§)/u" (c§) in (3c):
quelke + €2/ ()] = v (e Voo + (1 = y)e 2 + ’Yept/ z5[w (€))7 (€)' (ks) — 6 — Tislds — my. (14)
t

As t tends to infinity, all terms on the right side of this equation converge. In particular, I'Hopital’s rule
can be applied to the integral divided by e™?%, while as shown previously 7, = 0 for all ¢ sufficiently
large. Furthermore, the term in square brackets on the left side converges. There are two possible cases:
(i) limy—oo[ke + €2 /u/ ()] # 0, or (i) limy_ o[kt + €2 /u’(c§)] = 0. In case (i), reveals that ¢4

converges as t — 0o so Judd’s theorem applies and lim; ., 75¢ = 0. In case (ii),

0= lim [k + ez /u/(cf)] = p~" lim [ef + ' (c§) /u” ()]
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where the second equality uses lim;_, o ¢f = plim;_,o k¢ from (3d, e), and also the earlier result regarding

the limiting behavior of z;. =

3.7 Remark Consider the following cases of the theorem. If u = log, then in the proof z; = —e™*¢/p and
¢§ = pky, so, dropping time subscripts to denote limiting values, in the limit yields: 0 = yv'(¢®)k[f' (k) —
§ — 2p] + 1 — v (apply 'Hopital’s rule to the integral divided by e **) with ¢ = f(k) — 6k — pk. This
determines the steady state value(s) of k, and hence, by Lansing’s theorem, 7. If w is any other CES
function for which the convergence hypotheses are satisfied, then c¢® + u/(¢¢)/u”(c?) # 0, so 7, = 0. In
this case, determines g1, and k solves f'(k) = 6 + p. For general u, if 74, fails to converge to zero, k
must satisfy pk + v’ (pk)/u"’ (pk) = 0, and determines the limiting behavior of the indeterminate form

limy o0 que[ke + €pt2t/ul(05)]' u

4 Conclusion

This paper has clarified the relationship between the results of Judd (1985) and Lansing (1999). Judd’s
theorem states that in steady state the optimal tax rate on capital income is zerom Lansing identifies a
logarithmic example of one of Judd’s models in which this tax rate can converge to any number, zero or
otherwise — the value depends on the model’s primitives (the worker’s utility function, the production func-
tion, etc). It seems odd that the same model can generate two different results. The apparent contradiction
is resolved by observing that Lansing has relaxed the hypotheses of Judd’s theorem. With less restrictive
hypotheses, there are more possible outcomes. One would like to know if yet more outcomes are possible
with yet less restrictive hypotheses. Theorem 3.6 addresses this issue and characterizes all possible steady
state outcomes for this particular model. There are two, and only two, possibilities: the zero capital tax
result is one, while in any other steady state the capitalist’s marginal utility of consumption must have
unitary elasticity. The latter possibility is satisfied identically with logarithmic utility, which was the case

considered by Lansing.

10 Judd (1999, 2002) has returned to this issue, but not with the worker-capitalist model. The range of views on capital income
taxation can be exemplified by Atkeson, Chari, and Kehoe (1999) on the one hand, and Conesa, Kitao, and Krueger (2009) on
the other.

14



References

1]

Andrew Atkeson, V.V. Chari, and Patrick J. Kehoe, “Taxing capital income: A bad idea,” Federal
Reserve Bank of Minneapolis Quarterly Review 23(3), Summer 1999, 3-17.

Juan Carlos Conesa, Sagiri Kitao, and Dirk Krueger, “Taxing capital? Not a bad idea after all!”

American Economic Review 99(1), March 2009, 25-48.

Christophe Chamley, “Optimal taxation of capital income in general equilibrium with infinite lives,”

Econometrica 54(3), May 1986, 607-622.

Hubert Halkin, “Necessary conditions for optimal control problems with infinite horizons,” Econometrica

42(2), March 1974, 267-272.

Kenneth L. Judd, “Redistributive taxation in a simple perfect foresight model,” Journal of Public

Economics 28(1), Oct 1985, 59-83.

Kenneth L. Judd, “Optimal taxation and spending in general competitive growth models,” Journal of

Public Economics 71(1), Jan 1999, 1-26.

Kenneth L. Judd, “Capital-income taxation with imperfect competition,” American Economic Review

Papers and Proceedings 92(2), May 2002, 417-421.

Takashi Kamihigashi, “Necessity of transversality conditions for infinite horizon problems,” Economet-

rica 69(4), July 2001, 995-1012.

Murray C. Kemp, Ngo Van Long, and Koji Shimomura, “Cyclical and noncyclical redistributive taxa-

tion,” International Economic Review 34(2), May 1993, 415-429.

Kevin J. Lansing, “Optimal redistributive capital taxation in a neoclassical growth model,” Journal of

Public Economics 73(3), Sept 1999, 423-453.

Robert E. Lucas, Jr., “Supply-side economics: An analytical review,” Ozford Economic Papers 42(2),

Apr 1990, 293-316.

Atle Seierstad and Knut Sydsaeter, Optimal Control Theory with Economic Applications, Amsterdam:
North-Holland, 1987.

Ludwig Straub and Ivin Werning, “Positive long run capital taxation: Chamley—Judd revisited,” MIT
working paper, Feb 2015.

15


https://dl.dropboxusercontent.com/u/125966/reappraisal%20chamley-judd_aug.pdf
https://dl.dropboxusercontent.com/u/125966/reappraisal%20chamley-judd_aug.pdf

Appendix

This appendix contains material on the following: the effect of interest rates on savings; when can the
first best be decentralized as an equilibrium; necessary conditions for the infinite horizon optimal taxation

problem; and could 7 = 0 be a solution to the infinite horizon optimal taxation problem.
The effect of interest rates on savings

Consider a two period model in which a consumer chooses first period consumption ¢; and second period
consumption ¢y to maximize uj(c1) + Suz(c2) subject to the present value budget constraint ¢; + co/R <
y1 + y2/R. The per-period utility functions u; and us are strictly increasing and strictly concave; (3 is a
subjective discount factor (which could have been subsumed in u2); R is the gross after-tax interest rate; and
Yt is exogenous income in period ¢. Let y = y1 + y2/R be present value income. The first order conditions

are uy(c1)/[Bubh(c2)] = R together with the budget with equality. Substitution and re-arrangement yields
ui(c1) = BRuy (R(y — c1)).

This determines ¢; implicitly as a function of R and y. Differentiation yields

Oc Oc
u/ll(cl)af]% = Buy(ca) + BRuY (c2) [y —c — R@I%]
and hence
" 2 1 aCl I "
[ul (c1) + BR uy (02)] 9B Bug(cz) + Beauy (c2)

- o (48 10).

Os\ _ us(c2)
sgn <8R) = —sgn <02 + u'g’(cz)) .

Therefore, in theorem 3.6 the condition lim;_, o [c§ + u/(cf)/u”(cf)] = 0 has an interpretation that savings

Since savings are s = y; — ¢q,

are insensitive to the interest rate in the long run: the income effect and the substitution effect cancel each

other out.
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When can the first best be decentralized as an equilibrium?

The first best problem for the model in section [2|is to choose {cf, ¢}’, ki }i>0 to
maximize / T et (e) + (1 — y)u(cs)]dt
0
subject to  ¢f + ¢’ + ky + 6k = fky)
ko > 0 given.

The current value Hamiltonian is H (k, ¢, ¢, \) = yv(c™) + (1 — y)u(c®) + A[f (k) — 0k — ¢® — ¢*] where ) is

the co-state for k. The optimality conditions are
OH/Ok = N[f' (k) — 0] = phe — e
OH/oc® = (1—u'(cf) =X\ =0
OH/oc" = ~Av'(c}') =X\ =0

OH/OX fhy) = 0ky —cf — ¥ =y

tlim e "Nk =0, ko> 0 given.

We can use the 0H/0c® equation to eliminate A and get the following equivalent conditions:

u(cf)eg/u(cf) = p+0— f(ke) (15)
(L=u'(cf) = '(c}) (16)
ke = flk) — O0ky —c§ — ¥ (17)

Jim e P (cf)ky =0, ko > 0 given. (18)

Suppose we have a solution to these first best conditions, denoted by asterisks, {c{*, c**, k; }i>0. Our
task is to determine when this solution can be decentralized as an equilibrium. Ie., when can we find {7, };>¢

such that {cf*, c}’*, k', 7+ }+>0 is a solution to

o = flki) = ke — ik (19)

ke = 7k — c§ (20)
ERE) = po (21)
lim e "/ (c{)ky =0, ko > 0 given. (22)

t—oo
We have omitted the constraint 7y > 0 which was imposed on the government’s optimal taxation problem.

Since the first best satisfies , we will satisfy if and only if

Feo= f(kE) — 6. (23)
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Since the first best satisfies , and with 7 as just defined, we will satisfy if and only if
o’ = f(ki) — ki f' (). (24)

If the first best does indeed satisfy , and with 7, defined by , then the final equilibrium condition,
, is also satisfied.

We conclude that the first best can be decentralized as an equilibrium if and only if it satisfies for
all t > 0. There is no reason to expect it to satisfy this condition, so there is no reason to expect it to be
decentralizable. However, when this does occur, the equilibrium after-tax interest rate in equals the

before-tax rate. Hence, the capital income tax rate is identically zero through all time.
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Necessary conditions for the infinite horizon optimal taxation problenﬂ

As in section [3] the optimal taxation problem is as follows:

maximize /000 e PIyu(f(ke) — Ok — Teky) + (1 — y)u(cs)]dt
subject to ky = Foky — cf

¢ = (p = mo)u' (cf) /u"(cf)

7t >0

ko > 0 given, lim e P! (c)ky = 0.

Let {(77, k7, c{*)}t>0 be a solution to this problem. Then following Halkin (1974) we know that for all

T >0, {(7F, kf, c§*) Jo<i<r is a solution to the following finite horizon problem with clamped terminal state:

maximize /OT e P yu(f (ki) — Oky — Tieke) + (1 — y)u(ch)]dt
subject to ky = 7k — cf

& = (p—reu' () /u"(cf)

7t >0

ko > 0 given, kp =k}, ¢ = .

On the last line the terminal values of the state variables are clamped down at the time 7" values that solve
the infinite horizon problemE

We shall proceed to express this clamped terminal state problem in the form that appears in section 3
of chapter 2 of Fleming and Rishel (1975)IE| Unfortunately we need a slight change of notation. Fleming
and Rishel (1975) use the symbol u for the control, while the optimal taxation problem already uses u for
the capitalist’s utility function. So we will replace Fleming and Rishel’s (1975) w(t) with 7 or 7#(¢) which is
the control in the main text of the paper. Also, Fleming and Rishel (1975) use the symbol f in the equation
of motion for the state of the system, while the optimal taxation problem already uses f for the production

function in intensive form. So we will replace Fleming and Rishel’s (1975) f with F.

I Necessary conditions for the finite horizon (T) optimal taxation problem are similar. Where the derivation differs, this will
be indicated with footnotes.

121n the finite horizon (7)) optimal taxation problem, the capitalist faces the constraint kr > 0. This is the finite horizon
equivalent to the infinite horizon no-Ponzi condition. The utility maximizing capitalist chooses k7 = 0. So in this case the
government’s optimal taxation problem is almost identical to the clamped terminal state problem except that the boundary
conditions are ko > 0 given and kr = 0, with ¢, unconstrained.

13Wendell H. Fleming and Raymond W. Rishel, Deterministic and Stochastic Optimal Control, Berlin: Springer-Verlag, 1975.
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The state of the system at time ¢ is

T (t) kt
za(t) | =1 o
I3 (t) I3 (t)

Le., we are introducing a new component of the state, z3(t). The equation of motion is @(t) = F (¢, z(t), 7(t))

where
TT1 — T2

F(t,x1,29,x3,7) = (p — F)u/ (z2) /0" (22)
e [yo(f(z1) — 621 — Fn) + (1 = y)u(w2)]
So i3 is equal to the third component of F', and we can integrate to get x3(t1)—x3(to) = ;01 e Pt yu(flzi(t)—
6z1(t) — 7(t)a1(t)) + (1 — v)u(za(t))]dt. Compare this with the welfare objective in the optimal taxation
problem with clamped terminal state. If we start the system at the fixed time ¢ty = 0 and end it at the fixed

time ¢; = T, then the performance index which we seek to minimize is the negative of welfare:
¢1 (t()7 tl, x(to), .’L‘(tl)) = .’)33(t0) — .’)33(t1).
The end conditions are ¢y(-) = ¢5(-) = @4(-) = ¢5(-) = Pg(-) = 0 where

¢2 th tla = tO

¢d tOvtlv tl—T

= z1(t1) — k7

= xg(tl) — C?.

¢5 tOvtla

( a(t1))
( 2(t1))
oy (to, t1,z(to), z(t1)) = z1(to) — ko
( z(t))
%6 (tos t1, z(to), (t1))

Since z(to) and z(t1) are 3-tuples, ¢ is a function from R® to R®. The closed control set U, introduced on
the last line of page 23 of Fleming and Rishel (1975), is taken to be U = [0, 00). This captures the constraint
7 > 07

The Pontryagin necessary conditions for optimality of (x*,7*) are (5.1) through (5.6) on page 27 of
Fleming and Rishel (1975). These conditions are that there exists a non-zero vector (A1, ..., \g) with Ay <0

and there exists a function P : [tg,¢;] — R such that

P(t) = —Pt) Fy(t,2*(t),7(t)) Vt€ [to,t1] (adjoint equations)
P(t) [F(t,z*(t),7(t)] = max P(t) [F(t,z*(t),7)] Vte€ (to,t1) (maximum principle)

11In the finite horizon (T') optimal taxation problem, we modify ¢ as follows: ¢5(to,t1,2(t0), z(t1)) = x1(t1) which captures
the constraint k7 = 0, and we delete ¢g. See footnote Then ¢ is a function from R8 to R5.
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P(t) = XNo,, (to,t1,2*(to), z*(t1))
P(ty) = —X%»O (t()v t1,x*(to), x*(tl))
(transversality conditions)
P(tl)lF(tl,.’17*(751>,F*(t1)) = —)\/(btl (to,tl,.’ll‘*(to),l'*(tl))
P(to)/F(to,x‘*(to),f*(to)) = )\/(bto (to,tl,x*(to),l‘*(tl))

where ¢, is the partial derivative of ¢ with respect to the arguments of x(t;), and similarly for ¢, . This

notation ¢, is not ideal since 1 refers to a 3-tuple here whereas x; also refers to the first state variable, a

scalar. Below, the meaning of x; should be clear from the context. In what follows, we drop the asterisks.
We now proceed to re-write these necessary conditions, using the optimal taxation problem’s x, F', and

¢. From the definition of F' above we have that F,(t,z1, z2, z3,7) is equal to

7 -1 !
0 (0= 7)1 = [t (22)] "o/ (z2)u" (@)} O
e_ptfyv'(f(m) — Sxy — 1) [f’(ﬂh) _5— 7:] e‘Pt(l — ) (x2) 0

Hence the third component of the adjoint equations yields P3(t) = 0, so Ps(t) is a constant which we will
simply denote P3. Then the other two adjoint equations can be written as follows, using the definition of x

and using the end conditions ty =t; — T = 0:
Pl (t) = —P1 (t)’lzt — Pge_pt’y’l)l(f(kt) - 6/€t - Ftkt) I:f/(kt) -0 — 7:15} Vite [0, T} (25)
Py(t) = Pi(t)— Py(t)(p— {1 — [u’(cf)] _Qu'(cf)u”’(cf)} — Pye PH(1 —y)u/(c§) Vtel0,T)]. (26)
With U = [0, 00), the maximum principle states that #; must solve

We can disregard the terms that do not involve 7. Then 7; must solve
max {Pl(t)fk:t — Py(t)ru (c) " (c§) + Poe™ Py (f (ke) — Sy — fkt)} vt e (0,T). (27)
The first order necessary condition for this problem is

Py(t)ky — Pa(t)u/ (cf) /u" () — Pse™ P ykyt! (f (ki) — Oy — 7iky) =, <0 & 9,7, =0 Vie (0,T) (28)

where 7, is a Lagrange multiplier.
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We now use the definition of ¢ to evaluate its derivativeE

0 0

1 0

0 1

by, (to, t1, 20, 1) = o | oy, (to, t1, 20, 1) = 0

0 0

0 0
0 0 1 0 0 -1
0 0 O 0 0 0
by (tos 1, 20, 21) = 000 ¢, (to, 1,20, 21) = 000
Fo AT 1 0 0 | TN 00 0
0 0 O 1 0 0
0 0 O 0 1 0

Substitute into the transversality conditions to get the following, where we use the result above that P; is a

constant:

( Pl(T) PQ(T) P3 ) = ( )\5 >\6 *)\1 )

(P(0) P(0) P3) = (=X 0 —X\p)

Py(T)(Frkr — ¢5) 4+ Po(T)(p — Fr)u/ () Ju” (¢F) + Pse™ " [yo(f (kr) — 0kr — Frkr) + (1 —y)ul(ct)] =
P1(0)(Toko — ¢§) + P2(0)(p — Fo)u' () /u” (c§) + P3 [yo(f (ko) — 6ko — Toko) + (1 — Y)u(c§)] =

The last transversality condition is the only place where Ay appears so this equation serves as the definition
of Ao but plays no other role in the solution to the optimal taxation problem. Similarly, the penulti-
mate transversality condition defines A3 but plays no other role. The other transversality conditions define
Ay = —P1(0), As = P1(T), and A¢ = P2(T"). We also have \; = —P5. Recall from the statement of the Pon-
tryagin necessary conditions that A\; < 0. Thus, the transversality conditions provide us with the following
information{™®|

P2(0):O & PgZO

By way of contradiction, suppose (P;(0), P3) = (0,0). Then, together with the transversality condition
P5(0) = 0, the unique solution to the differential equations and is P1(t) = 0 and Py(t) = 0. But

then the transversality conditions yield Ay = Ay = A3 = Ay = A5 = A\¢ = 0 which is a violation of the

15In the finite horizon (T) optimal taxation problem, ¢ is a function from R® to R5. See footnote In this case the
derivative of ¢ would include only the first 5 rows shown here. Furthermore, the non-zero vector A would have only 5 components,
(A1,..., A5).

16Tn the finite horizon (T') optimal taxation problem, there is no sixth component of ¢ and there is no \g. See footnote So
where A\ appears in the transversality conditions in the text, it would be replaced with 0 for the finite horizon optimal taxation
problem. In this case, the transversality conditions would provide us with the following information: Ps(0) = P2(T) =0 &
P53 > 0. The necessary conditions for optimality would thus be this information together with , , and /
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Pontryagin necessary conditions for optimality. We conclude that the assumption (P;(0), P3) = (0,0) leads

to a contradiction so, after a normalization, we havﬂ
P(0)=0 & P30 & [(F1(0),Ps)ll = 1. (29)

In summary, if {(7;, k¢, ¢§) }+>0 solves the infinite horizon optimal taxation problem then it also solves the
finite horizon (T") optimal taxation problem with clamped terminal state and hence there exists a function
P :[0,T] — R? and there exists a number P3 such that , , , , and (29) are satisfied.

Following Halkin (1974) we consider the finite horizon optimal taxation problem with clamped terminal
state for a sequence of time horizons T, T2, ... with lim;_,.c 7% = oco. As above, for each 4 there exists
a function P! : [0,7%] — R? and there exists a number Pi such that , , , , and (29)) are
satisfied when the control and state are given by the solution to the infinite horizon optimal taxation problem.
Since, by , | (Pi(0), Pi)| = 1 for all i, there exists a subsequence for which (Plij (0), Péj) converges. For
ease of notation, and without loss of generality, assume the convergence occurs along the original sequence:
lim; o (P} (0), Pi) = (P1(0), P3). We have P3 > 0 and |(P1(0), P3)|| = 1 since, by , these conditions are
satisfied for all 4. Similarly since P4(0) = 0 for all 4, if we define P,(0) := lim;_ o Pi(0) then P»(0) = 0.

For t € [0,00) consider the differential equations , , and Ps(t) = 0 with initial conditions
(P1(0), P5(0), P3) = lim; (P} (0), Pi(0), Pi) as in the previous paragraph. It should be understood that
where the control and state appear in these equations their values are the solution to the infinite horizon
optimal taxation problem. Let P : [0,00) — R? denote the solution to these differential equations with these
initial conditions. Since solutions to differential equations are continuous in initial conditiond™| and since
lim; o T = oo we have for all t > 0, (Py(t), P2(t), P3(t)) = lim;_ o (P{(t), Pi(t), Pi). Then by continuity,
{(P1(¢), P2(t)) }+>0 and Pj satisfy and (28).

In summary, we have shown that if {(7, ki, ¢f) }+>0 solves the infinite horizon optimal taxation problem
then there exists a function P : [0,00) — R? and there exists a number P3 such that , , , ,
and are satisfied with [0, T] replaced by [0, 00) and with (0,T) replaced by (0,00). That is:

Pi(t) = —Pi(t)fy — Pse "' (f(ke) — 0ky — 7oks) [f'(ke) =0 — 7] Yt>0 (30)

Boft) = Pi(t) — Pat)(p — ) {1 — [u(c)] o (" ()} — Poe (1)l (ef) VE20  (31)

17n the finite horizon (T') optimal taxation problem, we have P>(0) = P2(T) = 0 & P; > 0. See footnote By way of
contradiction, if P3 = 0 the first order linear differential equations and with boundary conditions P2 (0) = P2(T) =0
would yield Pi(t) = 0 and P2(t) = 0. But then the transversality conditions would yield A1 = A2 = A3 = A4 = A5 = 0 which
would violate the Pontryagin necessary conditions for optimality. Thus, it must be that Pz > 0.

18Gee section 4 of chapter 8 of Morris W. Hirsch and Stephen Smale, Differential Equations, Dynamical Systems, and Linear
Algebra, San Diego: Academic Press, 1974.
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71 solves maxs>q {Pl (t)Tky — Po(t)ru () /u" (c§) + Pse Piyv(f(ke) — Ok — fkt)} Vt>0  (32)
Pl(t)kt — Pg(t)u’(cf)/u”(cg) — P3€_pt’)/k't’Ul (f(kt) - 5](1,5 - ftk't) = ﬁt S 0 & ’F)tft =0 Vt>0 (33)
PO0)=0 & Py>0 & [|(P0). Py = 1. (34)

We now ask if the system through can have a solution in which P; = 0. If so, then P;(0) = +1
from , while and yield

Pi(t) = P (0)e B vt>0
d
%[Pz(t)eﬂt] = P(t)e™ Vt>0
B t
where R; = /fsds
0
t
Qt = /wsds
0
we = (p—7){1 = [u(c))] Pu/(cu” (c9)}.

If we integrate the second of these equations and use the boundary condition P5(0) = 0 from , we get
¢ ¢

PQ(t)EQt — / Pl(S)EQSdS — Pl(O)/ e(stRS)dS
0 0

where the second equality uses the solution for P (t) above. Substitute these solutions for P;(¢) and Pa(t),

together with the assumed Ps; = 0, into :

_ t _
Py (0) {e_Rtkjt — [6_9‘/ e(QS_RS)ds} u’(cf)/u”(cf)} =0, <0 & 0,7 =0 Vt>O0.
0

Since u” < 0 < v’ and since the exponential function is strictly positive, the term in curly braces is strictly
positive. Then since P;(0) = +1 from (34)), it follows that requires P;(0) = —1 and 7 = 0 for all ¢ > 0.
In summary, the assumption P; = 0 leads to the conclusion that the optimal control for the infinite horizon
optimal taxation problem must be 7; = 0 for all £ > 0.

The contrapositive of the result from the previous paragraph is the following: if 7 = 0 does not solve
the infinite horizon optimal taxation problem, then P3 # 0, and hence from , P; > OE In this case we
can let

que = € Pi(t)/Ps,  qa = e Po(t)/Ps, 1, := —e"ij,/Ps.
9n the finite horizon (T') optimal taxation problem, we have P3 > 0 and this holds without any need to exclude 7 = 0
from being optimal. See footnote [[7} So in this case we can apply the transformation that appears below in the text and find

that (3) is necessary for optimality. But in addition, recall that for the finite horizon optimal taxation problem P>(T") = 0. See
footnote Thus, in this case the necessary conditions for optimality include not only (3), but also ga7 = 0.
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Then

Pi(t) = Pse g

Pi(t) = —pPse "'qis + Pse gy,

Py(t) = Pse Pqu

Py(t) = —pPse gy + Pse o
i, = —Pe 'y,

Use these to substitute for Py (t), Py(t), Pa(t), Pa(t), and #, in , , 7 , and . Then divide
each of through by Pse=?t > 0 to get

—pque+qie = —quTs — ' (f(ke) = Ok — Feke) [f' (ki) =0 — 7] VE>0
—pGat + G2t = que — qai(p — ft){l - [U//(Cf)] _QUI(Cf)UW(C§>} - (1= ’Y)UI(Cf) Vi>0
7y solves max {qm’kt — qoutu () Ju" (cf) + v (f (ki) — ks — Fkt)} Vt>0
qrike — qoe () Ju" (cf) — 'yktv’(f(kjt) — 0k — ftkt) =-n<0& =0 Vi>0

g20 = 0.

The first two lines of these expressions coincide with (3a) and (3b) respectively. The penultimate line
coincides with (3c) and the first part of (3f). The boundary condition ga9 = 0 on the last line here appears
in (3f).
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Could 7 =0 be a solution to the infinite horizon optimal taxation problem?

In section [3] we assumed the optimal time path for the after-tax net of depreciation interest rate is not 7, = 0.
By excluding 7; = 0 from consideration, we were able to use the normal Pontryagin necessary conditions for
optimality and exclude the abnormal case. However, proper analysis should not impose an assumption on
the time path {7;};>¢ since it is endogenous to the optimal taxation problem. The purpose of this section
is to show that under assumptions 1 and 2 below, #; = 0 is not optimal. These two assumptions are stated
in terms of primitives (initial conditions, utility functions, etc) and not in terms of endogenous variables.
Where the analysis brushes over some technical details, this will be pointed out in the presentation.

We begin with some intuition. Recall the government’s welfare objective [ e ™! [yv(c})+ (1—7)u(c§)]dt.
Our first result will be that if the worker’s welfare weight ~ is zero, then 74 = 0 cannot be optimal. This
is obvious. The capitalist is dependent on interest income. So when all welfare weight is on the capitalist
it cannot be optimal to tax away all interest income. The more interesting case is v > 0. The worker’s
equilibrium consumption is ¢}’ = f(k:) — dk; — 7tk which is adversely affected in the short run by an increase
in 7. So if this short run effect is dominant then perhaps it could be optimal to set 74 = 0. But in the
longer run 7; affects capital accumulation via /%:t = 7k — ¢f and capital affects the worker’s consumption:
ocy Joky = f'(kt) — 0 — 7. In particular, relative to the 7y = 0 equilibrium, an increase in the capital stock
is desirable for the worker if f'(k;) —d > 0. Thus, relative to the 7; = 0 equilibrium, if (i) an increase in 7
causes an increase in capital and if (ii) f'(k;) — ¢ > 0, then apparently the worker’s longer run utility will
improve if we increase 7; above zero. If this longer run effect is dominant then it would seem 7; = 0 is not
optimal. This is indeed the case when conditions (i) and (ii) are formalized as assumptions 1 and 2 below.
We now turn to the analysis.

Let T > 0 be given and let € > 0 be given. Consider the following time path:

Ft:

0 ifo<t<T
e T <t

All results in this section are based on this family of variations, parametrized by T and e¢. Note that ¢ =0
yields 7, = 0, the object of study here. If, within this family of variations, ¢ = 0 is not optimal for the
optimal taxation problem, then surely 7; = 0 does not solve the optimal taxation problem more generally.
With this parametrized time path for {7 };>0, cumulative interest is then

_ t 0 ifo<t<T
Rt::/fsds: )
0 e(t—T) UT<t.

The equilibrium is as follows. The solution to the capitalist’s utility maximization problem is given
by : e Pt (c§) Ju/(c§) = e Bt and ky = I e Ractds. The worker’s consumption is given by :

¢ = f(kt) — 0kt — Ttky. The capital accumulation equation is ke = 7k — ¢f which is equivalent to
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_P t _p o =
e Bl —ky = — fo e Hs ctds. With 7, and R, as above, we have

eP'u/(cf) ifo<t<T
w(cf) =

ePt=et=Thy/(cg) if T <t

ke = ko— [ycids f0<t<T

ey = kg — [T ctds — [peDecds if T <t

ko = fOT ceds + [; e <t Decds
F(ke) — Ok f0<t<T

! =

! Fky) — Oky — eky T < t.

Social welfare is W (e, T) := [ e **[yv(c}”) + (1 — v)u(c§)]dt where the consumption levels are evaluated
at the (¢,T) equilibrium. The government faces the policy constraint #; > 0. Thus if there exists T" such
that We(0,7) > 0, then 7 = 0 cannot solve the optimal taxation problem. Our goal for the remainder of
this section is to evaluate the partial derivative W,(0,T) and show that it is positive for sufficiently large T'
when assumptions 1 and 2 below are satisfied. We do not use the Laplace transform method of Judd (1985)
since the baseline € = 0 equilibrium is not in steady state.

Assuming we can differentiate under the integral sign and all integrals converge, W, is given by

< ws OCY o 0ct
wier) = [Ter wenGh s a- G| o

= /OO efpt’yv'(cf’)aﬁdt + (1 —y)u'(cf) /T 8c§dt + (1 =)/ (cf) /OO efe(th)%dt (35)
0 Oe o Oe T Oe
where the second line uses the capitalist’s first order condition as presented above.
We now proceed to differentiate each of the equilibrium equations with respect to e. We again assume
differentiation under the integral sign is justified and all integrals converge:
ePtu (c§ )aacﬁ(’ fo<t<T

eptfe(th) |:_(t _ T)’UJI(CS) + u”(cﬁ)aa—cj] Hr<t

uw(e) Gt =

ke = Ot % ds = —u"( aco fo ufzic)ds ifo<t<T
e U [t =Dk + 52] = —u(c§) 52 Jy s + [y o™ (s — T)ekds
- f; e_E(S_T)% [—(s — T (c§) + u”(cf))aa—cﬂ ds ifT <t
oy Och ePs c
0 = u”(CO) a: 0 u” c9) fT )csds

bR {_(S = Ty (c§) + u”(cf) 52 | ds

dep [f' (ki) — 0] 5+ ifo<t<T
T k) -0 —d % T <t
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Throughout, we can use the capitalist’s first order condition to replace e’ with u'(c§)/u/(c§) if 0 <t < T,
and replace e”'~<(=T) with u'(c§)/u/(c§) if T < t. We will also combine the integrals that have s — T as a
multiplicative factor in the integrand. And for the sake of completeness, we also repeat the dc}’/de equation

as is:
uw'(cf) %? u”(c§)/u'(c§) fo<t<T

(e = :
v () [—(t —T)+ 2k u”(cg)/u’(cg)} i T <t

P = G/ ()] fo whds ito<t<T

e (b= Tk + 5] = — R () ()] Jy s

+ fp e T (s = T) [ + u/(c5) /u”(¢6)] ds

- [%Cﬁ"u c§) /v (e }f ec(s=T) s,,((i))ds ifT <t

ul/(cc

0 = {aaceou (c§)/u CO}fTu(c)ds

SR e T (s = T [ () ()] ds

Oct . . 00 _e(g— ' CZ
+ {a—f u”(co)/u’(co)] [ eels=T) u,/((cg))ds

v [ (k) — 6] Ze ifo<t<T
o k4 [ (k) — 5 — €] L T <t
Since the goal is to determine the sign of W,(e, T) at € = 0, we now evaluate these equilibrium derivatives
at € = 0, in which case e <(t=1) = ¢=<(s=T) — 1. Hence, fT :: (Cc ds + fT —e(s-T) 2 u,, ds = g;‘,,((ccr)ds

whether ¢ is ﬁnite or infinite. Furthermore, with € = 0 the capitalist’s Euler equation (3e) can be integrated

to yield pfo T c)ds = ¢ — c§j. And for the t — oo version of this, note that with e = 0 the capitalist’s first
order condition is u (c ) = etu’(c§), which implies lim;_.o c¢§ = 0, hence our integrated Euler equation in

the limit is p fo 77 (C wilcg) ds = —c§. So we will now evaluate the equilibrium derivatives at ¢ = 0 and replace

28



Ot :L,/((CPL)) ds with (¢§ — c§)/p and replace [;° ,,(CC)) ds with —c§/p:

ocs W' () Gelemo ' (c§) /u'(cF) H0<t<T
u' (Ct) D¢ |6 0o = u’(cf){ ( T)+ 800‘6 Ou (CO)/U (Co)} HT < ¢
Pelmo = = [ Fhleow ()0 (c6)] (i~ c§)/p HO<E<T
Belco = (b= Tk — | FElemow(c§)/0(c§)] (cf — c6)/p
+ f;(s — T[S +u(cg)/u"(cS)]ds T <t
0 =[50 lmou(ch)/u(ch)] (—cb/p) — J (s = T) [e5 4+ w'(e5) fu" ()] s
oct) o = { £ (ke) — 6] 95| e=o fo<t<T
9e 1=0 —]ﬂt + [f/(]ft) — (5] 37;|5:0 T <t

where it is implicit that all economic variables are evaluated at the ¢ = 0 equilibrium. From the penultimate

equation:
C
oc§
e e=0

Note that if u = log we have ¢ 4+ u/(c)/u"(¢) = 0, so dc§/de = 0 since in this case ¢§ = pko regardless of the

cou” (cg) /u'(c§) = *P/OO(S = T) [e§ + u'(c5) /u" (c5)] ds. (36)

T

time path for {7 };>o0.
We now evaluate W, in at € = 0 and substitute for (9c}’/0€)|c=o and for (9cf/0€)|c=o using the

results above:

°° Oct

dt—l—(l—v)u(c@)/o S ar

o ac’w
W) = [ e 5

e=0

e=0

> —pt (W _ 8kt _ Ooe—pt o (Y
= [ et o G i [ et
0 e [T ) e [ ()
H- G v | u(c)dt (=) [ -1

On the last line we can substitute for (9c¢§/0€)|c=o from , and recall our previous result [~ chg;))ds =

—c§/p when € = 0. For now, we leave the other line as it is:

wo.r) = [Terenrmo-a Gl a- [T e
e=0
+(1- v)u’(cﬁ)/T (t — T)cqdt. (37)

This gives a first result which, as mentioned in this section’s introductory remarks, is intuitively obvious:

e If the worker’s welfare weight is zero, i.e., v = 0, then W,(0,7) > 0 for all T and so 7y = 0 cannot

solve the optimal taxation problem.
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We now consider the case v > 0. Use the equilibrium derivatives to substitute for (9k:/J€)|c—o in

formula for W.(0,T):

We(O7T) = - |: aCO

u”<c3>/u’<c5>} | e e ) = a1 — b))

e=0 0

* /OO e Py’ () [f (ki) — 0)(t — T)kedt

+ [ el ) - 4 [ / (s = ) e () () ds |

T

- /OO e Py’ () kydt
T
+ (1 =) (cf) /Too(t —T)cidt. (38)

For the remainder of this section we make two assumptions:

e Assumption 1 Either the capitalist’s utility function is u = log, or else lim._,q cu” (c)/u/(c) € (—1,0).

For the latter alternative, the assumption is that this limit exists and is strictly between —1 and zero.
This is satisfied by, among many others, u(c) = (¢!~/7 —1)/(1—1/0) with the intertemporal elasticity

of substitution o > 1.

If u = log we have ¢ + u/(c)/u"(¢) = 0, so not only does yield (9cf/0€)|c=o = 0 thereby causing
the first line of to equal zero, but also the third line of equals zero too. Alternatively, if
lim.—o cu”(c)/u/(c) € (—1,0) then ¢+ u'(c)/u"(c) < 0 for all ¢ sufficiently small. In this case, we will
show that the sum of the first and third lines of is positive if T is sufficiently large. Note, from the
section earlier in this appendix entitled “The effect of interest rates on savings,” savings (and hence
capital) are an increasing function of the interest rate if future consumption satisfies c+u/(c)/u” (c) < 0.

In effect, we are assuming that an increase in 7; causes an increase in capital.

e Assumption 2 The initial stock of capital satisfies f/(kg) — J > 0.

That is, at the beginning of time the pre-tax net of depreciation interest rate is not negative. It then
increases monotonically as time proceeds since, with e = 0, capital evolves according to ky = —c§ so
capital declines monotonically and its marginal product rises monotonically. The assumption here is

stronger than section [3[s f (ko) — dko > 0.

We now consider lim._,q cu”(¢)/u'(¢) € (—1,0) from the first assumption, and hence ¢+ u'(¢)/u"(¢) <0
for all ¢ sufficiently small. We shall show that the sum of the first and third lines of is positive if T'
is sufficiently large. With e = 0 the capitalist’s first order condition is e”*u/(c§) = w'(c¢), which implies

lims_, o ¢¢ = 0. Thus under our assumption there exists T} such that if s > T} then ¢ + u/(c)/u" (&) < 0.
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Let T > T7 and write the sum of the first and third lines of as follows, where we use to substitute
for (0c§/0€)]e=o:

line 1 of + line 3 of

- / (5 — T) [+ w/(c5) /" (c5)] ds
T

{ | ermenirm o (o0 a

Ji(s = T) [eS + o/ (c0) fu(c2)] ds ] dt}
S (s =T [eg +u/(es) fu(co)]ds | - [

The symbol x at the end of the second line of denotes multiplication. Note that the integral on

b [T e - [ (39)

T

the second line of also appears in the denominator on the fourth line. Since T" > T3, everywhere that
cC+u/ () /u" (cC) appears in (B9), it is strictly negative. And under the assumption f’(kg)—& > 0, everywhere
that f'(k;) — ¢ appears in , it is strictly positive. With € = 0 the capitalist’s first order condition is
u'(¢f) = ePtu’(c§) which implies ¢ < ¢§ for all ¢ > 0 so the third line of is strictly negative and does not
depend on T'. On the fourth line of , the ratio of integrals has a value of zero when the dummy variable
t equals T and the value of this ratio increases monotonically as a function of ¢ towards a limit of one as
t — oo, and this holds regardless of the value of T'. Therefore, the fourth line of converges to zero as
T — oo. In particular, there exists 75 > T3 such that if T > T5 then the entire expression in curly braces
in is strictly negative. Since the integral on the second line of is strictly negative, we conclude that
the entirety of is strictly positive for all T > T.

Thus far we have shown that under our assumptions the sum of the first, third, and fifth lines of is
positive if T > T, (where we can define T, := 0 under the u = log alternative in the first assumption). We
now address the second and fourth lines.

/DO P! (ke (' (k) — 8) (6 —T) — 1] de

T

line 2 of + line 4 of

= / e Pt/ (¢ ) ks i [(f'(ksyr) — 6)s — 1] ds
0

= e Ty (c§rysr)kr X

(T) (oW
{ / M e ) ke g s 1) as
0

UI(Cg(T)J,-T) kT

+/oo e~ Ps ’[}/(C;U+T) ks-‘rT [(f/(kerT) _ 5)5 _ 1] ds}(40)
S

(T) V(e irysr) kr
On the fourth and fifth lines of the integrand is the same but the limits of integration differ. We need
to define the integration limit S(7"). The term in square brackets, namely ( ' (ksyT) — 5)8 — 1, has a value
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of negative one when s = 0 and under our assumptions it increases monotonically as a function of s towards
a limit of infinity as s — co. (Recall that when € = 0, ky = —¢¢ < 0.) Therefore there exists a unique s > 0,
denoted S(T'), such that (f'(ks¢r)+7) — 0)S(T) — 1 = 0. As a consequence of this definition for S(T'), the
fourth line of is strictly negative since the dummy variable satisfies s < S(T') and the fifth line is strictly

positive. Furthermore, by implicit differentiation we have

—S(T) f" (ks(ryr)ksry+r

S(T) = .
f'(kscrysr) — 0+ S(T) f"(ks(ry+7)ks(ry+1

< 0.

We can show that limp .., S(T) = 0: Since S(T') > 0, we have lim7 .o kg(r)4r = 0 from the capitalist’s
no-Ponzi condition when e = 0, and hence limy_,oo[f'(ks(r)+7) — 6] = co. The result limz_,o, S(T") = 0 now

follows from the equation (f’(ks(r)+7) — 6)S(T) — 1 =0 that implicitly defines S(T'). Note that

(c? "(f(kg — 0k,
/’u S:ZS+T) - V' (f(ksyr) +7) <1 forall s € [0.5(T)) (41)
v'(C§(ry4r) V' (f(ks(ry+r) — Oksr)+1)

where we have used the following: ¢}’ = f(k;) — dk; when € = 0; f/(k;) — 6 > 0 under our assumptions; and
k; < 0 when ¢ = 0. Thus the integrand on the fourth line of has an absolute value less than one. (From
the definition of S(T'), the term in square brackets in the integrand has a value between negative one and
zero.) Noting the range of integration, we conclude that the fourth line of is negative with an absolute
value less than S(T).

In preparation for analysis of the fifth line of , note that with e = 0, ’'Hopital’s rule and the equilibrium
laws of motion (3d,e) yield

) —c5 1. cu(e)
Tooo € Too ¢€ = Tlmoo 7(C niey o l,lm ’ (42)
—oo Cp —oo Cp —oo pu/(c) /u” (cf) p =0 u'(c)

and by assumption this limit exists and is strictly positive. Since we also have limy_ o, S(T') = 0, it follows

that there exists T5 > T5 such that if ' > T3 then kr/c5. > S(T'). Now consider the fifth line of with
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o0 (L N
e’ SHT 2T [ (f(kgyr) — 0)s — 1] ds
/S(T) V(S irysr) kr [{Fheir) =9) ]

> [ e B () - ) ]
S(T
by similar reasoning to
/S —ps S+T [(f (ks(ry+r) —08)s — 1] ds

because with € = 0,5 > S(T) = f'(ks+7) > f'(ks(ry+r)

v

Y]

kJT/CT
Lo e R 5 sty ir) = 0)s = 1) s
because T' > T3 and the integrand is non-negative

/ kT/CT ps br + skp
S(T kr

v

[(f'(ks¢ry+r) — 6)s — 1] ds

because with e = 0, ¢t — k; is convex by (3d,e)
kr /et

_ / e 5 (1 — sc5 [kr) (s/S(T) — 1)ds

S(T

from (3d) for kp, and from the equation that implicitly defines S(T)

Y

. k‘T/C%
e—PkT /5 / (1 —s¢5/kr)(s/S(T) — 1)ds
S(T)

c 3
efka/c% (kT/CT - S(T))
65(T)kr/ct

where the last line follows from direct calculation of the integral. Since limy_ S(T) = 0 and since
limy_, o kr/c5 is strictly positive by , we conclude that the fifth line of tends to infinity as T — oo.

Combine this current result with our previous result that the fourth line of is negative with an
absolute value less than S(T'). Thus there exists Ty > T3 such that if T > Ty then the entire expression
in is strictly positive. That is, the sum of the second and fourth lines of is strictly positive.
Previously we showed that the sum of the first, third, and fifth lines of is positive if T' > T5. This brings
us to the final conclusion of this section: Under assumptions 1 and 2, if 7' > T then the entire expression
in is strictly positive, i.e., W.(0,T) > 0 and so € = 0 cannot be optimal for the optimal taxation problem,

and more generally, 7 = 0 cannot be optimal for the optimal taxation problem.
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