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Abstract. We design a general set-up for the study of a generic econ-
omy whose development process is entirely driven by the spatio-temporal
dynamics of capital accumulation. It allows us to take into account spa-
tial heterogeneities in technological level and population distribution.
We solve analytically, via dynamic programming in infinite dimensions,
the optimal control problem associated to the model, finding explicitly
the optimal feedback and the value function. The expression of the
optimal dynamics of the system in terms of eigenfunctions of an appro-
priate Sturm-Liouville problem allows to simulate the behavior of the
variables and, in particular, their optimal discounted long-run spatial
distribution.
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1. Introduction

Arguably, modelling a spatial dimension is essential to understand a series
of key features of economic development: distribution of economic activity,
agglomeration of production and wealth, city formation, migrations, etc...
so it is not surprising that the relation between development and space ap-
pears already among the interests of the classical economists (for instance
Launhardt, von Thunen, Smith) and that space is at the core of the “fourth
wave of the increasing-returns revolution in economics”, as depicted in Fu-
jita et al. (2001) who accurately describe the burst of the New Economic
Geography in the last decade of the 20th century.

Given the importance of the subject it is more surprising that space was
absent from economic growth models, and that the first attempt to intro-
duce spatial capital mobility and accumulation in a modern economic growth

Date: December 7, 2016.

∗Aix-Marseille University (Aix-Marseille School of Economics), CNRS and EHESS..
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setting only arrives with Brito (2004)1. In Brito’s framework, the produc-
tion is described at any spatial point as a neoclassical production function
and employs local inputs; the output is used for in situ consumption and
investment while the net trade flow depends on the differentials of the spa-
tially distributed capital stock. This last hypothesis, consistent with recent
empirical results of Comin et. al (2012), partly traces back to classical eco-
nomic geographic literature of the 70s (see for instance the books of Isard
and Liossatos, 1979 and of Beckmann and Puu, 1985) being the counterpart
of models where “commodities flow from sources of excess supply to sinks
of excess demand” (Ten Raa, 1986). This is also the element that drives the
evolution of the economic system (via parabolic partial differential equa-
tions) in Brito’s setting.

After the contribution of Brito (2004), several papers have developed and
extended the initial setting and results. We refer the reader to Camacho et
al. (2008), Boucekkine et al. (2009, 2013), Fabbri (2016), Balestra (2017)
and the references mentioned there. The approach was also successfully
applied to environmental management problems, see Brock and Xepapadeas
(2015, 2016), Brock et al. (2014c), Camacho and Pérez-Barahona (2015) and
La Torre et al. (2015).

Among the reasons of the late development of the spatial economic growth
literature we can probably identify the technical difficulties of the problem.
The fact that, as mentioned, the state equation of the involved optimal
control problem is a parabolic PDE means, in particular, that the whole
optimization problem is infinite dimensional. Specific difficulties arise, es-
pecially from the adjoint system as described for example by Boucekkine et
al. (2009). Indeed several simplifying hypotheses have been used in various
papers to be able to deal with the problem: for example, Brito (2004) focu-
son traveling waves solutions, Boucekkine al. (2009) give results for the case
of linear utility and Brito (2011) studies the local dynamics of the system2.

Boucekkine et al. (2013) are the first to solve explicitly a spatial growth
model with capital mobility in the case of continuous spatial modeling3.
They choose an AK production function and, as a spatial support, a circle
à la Salop (1979), which avoids the problem of setting the most appropriate
boundary condition. The proposed model is solved explicitly, the optimal
solution is found in closed-form and the qualitative dynamics are closely
described. Despite the intrinsic tendency toward divergence, typical of the
endogenous growth models, the spatio-temporal dynamics of capital con-
verge asymptotically to the unifom distribution.

1Economic growth models with a spatial dimension were already formulated in the context
of the New Economic Geography stream but, as observed by Desmet et Rossi-Hansberg
(2010), they used to disregard intertemporal optimization behaviors and the capital ac-
cumulation process. Economic growth is typically modeled in the spirit of Grossman-
Helpman and Aghion-Howitt, see for instance Nijkamp and Poot (1998).
2Another possible way to overcome a part of the technical difficulties is to take capital as
fixed and only consider its possible spatial externalities. It is the idea used for instance
by Brock et al. (2014a, 2014b) and Quah (2002).
3They solve the problem by using the dynamic programming in infinite dimensions. Re-
cently the same problem is solved by Ballestra (2017) using an appropriate form of infinite
dimensional maximum principle.
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Indeed Boucekkine et al. (2013) study the simplest possible endogenous
growth case and several elements of interest remain out of the picture.
Maybe the most significant restriction from the point of view of the spa-
tial representation is the hypothesis of complete neutrality of space: each
point of the space is, from the intrinsic economic point of view, exactly
equivalent to any other. Only the initial distribution of endowments differ-
entiate them. This neutrality assumed is indeed the main reason behind the
obtained uniform convergence result. In the present contribution we extend
the model in two directions: (i) instead of supposing that technology is rep-
resented by an exogenous, time and space independent constant A, we allow
for a space-heterogeneous distribution of the technology among locations;
(ii) instead of hypothesizing a constant and uniformly distributed popula-
tion, we are able to study the dynamics of the system by specifying any
time-independent spatial distribution of the agents. As a particular case,
considering uniform distributions for both technology and population leads
exactly to Boucekkine et al ’s model. We can therefore study the robustness
of the asympotic convergence to uniform spatial distributions to population
and technology space dependence.

The generality of the problem treated also improves in several respects
the results of numerical works in the field. We refer the reader in particular
to the paper by Camacho et al. (2008) which presents a computational
study of a neoclassical spatial growth model à la Brito on the straight line
via a maximum principle approach. To overcome the mentioned technical
difficulty of studying the adjoint problem (in particular at infinity) they limit
their attention to the finite horizon case and they only treat the case of an
exponential spatial distribution of population. Avoiding these shortcuts has
a certain importance: on the one hand the behavior of the finite-horizon
model is qualitatively different from that of the infinite-horizon case (for
instance the optimal capital at the finite terminal time needs to be 0 and this
is odd for a growth model); on the other hand, it is potentially interesting to
study the specific role of population distribution across space. In our work
we can relax all these restrictions.

We are able to analytically solve the general case of the model by using
the dynamic programming in infinite dimensions (developed in Section 4).
Precisely, we are able to explicitly find the maximal welfare and the optimal
consumption both in feedback form (i.e. in terms of the current distribution
of wealth) and in explicit form. Ultimately, we can single out the PDE which
delivers the optimal evolution of the spatiotemporal capital distribution and
study the convergence properties considered. This result is obtained thanks
to the main methodological novelty of the present work with respect to the
existing literature in spatial growth models: the use of eigenfunctions of an
appropriate Sturm-Liouville problem. This approach, that generalizes the
Fourier-series expressions of Boucekkine et al. (2013) and those in terms of
eigenfunctions of Laplace-Beltrami operators of Fabbri (2016), is used in the
two main analytical results of the paper presented in Section 3: Theorem 3.2,
where we characterize the optimal control of the problem in terms of the first
eigenfunction of the (linear) zero-consumption problem; Theorem 3.3, where
the long-run profile of the capital distribution is expressed as an infinite
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series of the eigenfunctions of the same operator. A precise description of
the infinite dimensional techniques we use together with a complete proof
of all the analytical results is given in Section 4.

In Section 5 we use the analytical results of Sections 3 and 4 to run some
numerical simulations; we use the free software system Chebfun4 written
for MATLAB. The numerical results allow to quantify on an adequately
calibrated version of the model, the two main effects at work when the
space distributions of technology and population are heterogeneous. On
the one hand we have the classical core-periphery effect: the planner has
the incentive to favor the concentration of the capital in the areas where
it is more productive so that she will tend to promote (relatively more)
investment in areas where technological is better. On the other hand we
have the population effect: the Benthamite form of the functional (that is
the utility of each individual is weighted exactly in the same way, regardless
of the position and of the population size in the location) induces the planner
to guarantee an adequate level of per capita consumption across space so
that areas with higher population get also a higher aggregate consumption
and therefore a lower investment. The simulations of Section 5 show how
the two effects work separately and then how they interact.

The paper proceeds as follows. Section 2 is devoted to description of the
model. Section 3 presents the main analytical results. Section 4 provides
the proofs of the analytical results via dynamic programming in infinite di-
mensions. Section 5 concerns numerical simulations and associated remarks.
Section 6 concludes.

2. The model

We study a spatial economy developing on the unit circle S1 in the plan5:

S1 := {(sin θ, cos θ) ∈ R2 : θ ∈ [0, 2π)}.

We suppose that, for all time t ≥ 0 and any point in the space θ ∈ [0, 2π),
the production is a linear function of the employed capital:

Y (t, θ) = A(θ)K(t, θ),

where K(t, θ) and Y (t, θ) represent, respectively, the aggregate capital and
output at the location θ at time t while A(θ) is the exogenous location-
dependent technological level. In the model there is no state intervention
and then, at any time, the local production is split into investment in local
capital and local consumption so that, once we include a location-dependent

4The Chebfun system was initially introduced by Battles and Trefethen (2004), the mod-
ulus for eigenfunctions of Sturm-Liouville operators were originally conceived by Driscoll
et al. (2008) and then implemented by Birkisson and Driscoll (2011) and Driscoll and
Hale (2016).
5The functions over S1 can be clearly identified with 2π-periodic functions over R. We
shall confuse these functions, as well as the point θ ∈ [0, 2π) with the corresponding point
(sin θ, cos θ) ∈ S1. Hence, given a function f : S1 → R, the derivatives with respect
to θ ∈ S1 will be intended through the identification of functions defined on S1 with
2π-periodic functions defined on R.
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depreciation rate δ(θ) and the net trade balance τ(t, θ), we get the following
accumulation law of capital:

∂K

∂t
(t, θ) = I(t, θ)− δ(θ)K(t, θ)− τ(t, θ)

= Y (t, θ)− C(t, θ)− δ(θ)K(t, θ)− τ(t, θ)

= (A(θ)− δ(θ))K(t, θ)− C(t, θ)− τ(t, θ).

We can always include the depreciation rate δ(θ) in the coefficient A(θ) so
the previous equation simply becomes

∂K

∂t
(t, θ) = A(θ)K(t, θ)− C(t, θ)− τ(t, θ).

Following the idea of Brito (2004) (and then used by all the papers in the
stream described in the introduction), given 0 ≤ θ1 < θ2<2π, the net trade
balance over the region (θ1, θ2) is given by the balance of the flow of capital,
at time t, at the boundaries θ1 and θ2:∫ θ2

θ1

τ(t, θ)dθ =
∂K

∂θ
(t, θ1)−

∂K

∂θ
(t, θ2).

The last expression holds for any choice of θ1 and θ2 and it also equals the

quantity
∫ θ2
θ1
−∂2K

∂θ2
(t, θ)dθ so, letting θ2 to θ1, we get, for any θ ∈ [0, 2π),

τ(t,θ) = −∂2K
∂θ2

(t, θ). The capital evolution law reads then as

∂K

∂t
(t, θ) =

∂2

∂θ2
K(t, θ) +A(θ)K(t, θ)− C(t, θ).

If, for any (t, θ), we finally express the total consumption C(t, θ) as the
product of the per-capita consumption6 c(t, θ) and the time-independent
exogenous (density of) population N(θ), we obtain
(1){

∂K
∂t (t, θ) = ∂2

∂θ2
K(t, θ) +A(θ)K(t, θ)− c(t, θ)N(θ), t > 0, θ ∈ S1,

K(0, θ) = K0(θ), θ ∈ S1.

where K0 denotes the initial distribution of capital over the space S1. We
suppose that the policy maker operates to maximize the following intertem-
poral constant relative risk aversion functional:

(2)

∫ ∞
0

e−ρt
∫ 2π

0

c(t, θ)1−σ

1− σ
N(θ)dθdt,

where ρ > 0 and σ ∈ (0, 1) ∪ (1,∞) are given constant and the constraints
c(t, θ) ≥ 0 and K(t, θ) ≥ 0 are imposed. This is indeed a Benthamite
functional in the following sense: at any time t, the planner linearly weights
the per-capita utility at any location using the population density. In other
terms, the consumption/utility of all the people in the economy matter in
the same way in the target. This fact will have a certain importance in the
following.

The described model is a strict generalization of that considered by
Boucekkine et al. (2013) because we consider here a technological level

6We suppose resources and consumption are equally distributed among the population of
a certain location.
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A(θ) and a population density N(θ) depending on the location θ. In other
words here A and N are functions A,N : S1 → R instead of just two space-
independent constants.

3. Main analytical results

In this section we present the two main analytical results of the paper
that characterize the solution of the optimal control problem associated to
the model described in the previous section and the corresponding behaviour
of the system. As our results will be expressed in terms of the eigenvalues
and the eigenfunctions of a suitable Sturm-Liouville problem, we begin our
exposition by recalling the definitions of these concepts and some related
results.

We consider the differential operator associated to the zero-consumption
diffusion dynamics of (1), namely

(3) Lu(θ) :=
∂2

∂θ2
u(θ) +A(θ)u(θ).

The operator L is well defined on regular enough functions φ : S1 → R. A
non identically null regular function φ : S1 → R is called eigenfunction of
L if there exists a real number (eigenvalue) λ such that Lφ = λφ. It can
be proved (see Theorems 2.4.2 and 2.5.1 by Brown et al., 2013) that there
is a countable discrete set of eigenvalues {λn}n≥0 which can be ordered
in decreasing way. The highest eigenvalue, λ0, is associated to a unique
eigenfunction (i.e. its multiplicity is 1) and this is the only eigenfunction
without zeros. Eigenfunctions are defined up to a multiplicative factor;
we denote by e0 the unique eigenfunction corresponding to the eigenvalue

λ0 such that e0(θ) > 0 for each θ ∈ S1 and
∫ 2π
0 e20(θ)dθ = 1. It can be

proved (see again Theorems 2.4.2 and 2.5.1 of Brown et al., 2013) that the
multiplicity of any other eigenvalue is either 1 or 2, that λn → −∞, as
n → ∞, and that there exists an orthonormal basis of L2(S1) (see (11) for
its definition) of eigenfunctions {en}n≥0 corresponding to the sequence of
eigenvalues7 {λn}n≥0.

We have now collected the elements we need to describe the solution of
the model and we can proceed by presenting it. We will work under the
following spatial counterpart of the usual assumption on coefficient of the
standard one-dimensional AK model to ensure the finiteness of the utility.

Hypothesis 3.1. The discount rate satisfies

(4) ρ > λ0(1− σ).

The assumption that will make on A will imply that λ0 is positive (see
Remark 3.4). Hence, the previous condition is obviously verified when σ > 1
(that is the case for reasonable calibrations of the model, see Section 5).

7In the sequence {λn}n≥0 a certain value appears once, respectively twice, if its multiplicity
is 1, respectively 2.
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Theorem 3.2. Let Hypothesis 3.1 hold. Assume that A,N : S1 → R+ are
bounded and not identically null, denote by α0 the value8

(5) α0 :=

(
σ

ρ− λ0(1− σ)

∫ 2π

0
e0(θ)

− 1−σ
σ N(θ)dθ

) σ
1−σ

,

and by β the function α0e0.
Provided that the corresponding state trajectory remains positive, the con-

trol defined in feedback form (i.e. as a function of the capital distribution)
as

(6) c∗K(θ) =

(∫ 2π

0
β(η)K(η)dη

)
(β(θ))−1/σ , θ ∈ S1,

is optimal, so that the optimal evolution of the capital density is given by
the unique solution of the following PDE:
(7){
∂K
∂t (t, θ) = ∂2

∂θ2
K(t, θ) +A(θ)K(t, θ)−

(∫ 2π
0 β(η)K(η)dη

)
(β(θ))−1/σN(θ)

K(0, θ) = K0(θ), θ ∈ S1.

Moreover along the optimal trajectories the optimal consumption can also be
expressed explicitly in terms of time and it is given by

c∗(t, θ) =

(∫ 2π

0
β(η)K0(η)dη

)
egt (β(θ))−1/σ ,

where g is the growth rate of the economy, given by

(8) g :=
λ0 − ρ
σ

.

Once we compare the optimal consumption profile described in the previ-
ous theorem with that of Boucekkine et al. (2013) we can immediately see
the importance of the possibility of using a location-dependent coefficient
A. Indeed in the setting of Boucekkine et al. (2013) the (per-capita and
aggregate) optimal consumption level is always equal among the locations
while here the expression of the optimal consumption is given by the space-

independent term
(∫ 2π

0 β(η)K0(η)dη
)
egt and by the space-dependent term

(β(θ))−1/σ = (α0e0)
−1/σ. The latter depends on A(·) both via α0 and e0 and

on N(·) via α0. This fact is interesting from a theoretical point of view since
a priori one might guess that the egalitarian character of the Benthamite
functional could be enough to guarantee a spatial equal individual utility.
On the contrary the structural conditions of the economy can suggest to the
planner to diversify the per-capita consumption among locations. As we will
see in Section 5 the differentiation does not always go in the expected way.

The difference with Boucekkine et al. (2013) is also very significant in
our second result, describing the long-run profile of the detrended optimal
capital: while in case of space-constant A and N the space-distribution
of the wealth always converges (under the hypotheses of Theorem 3.3) to
a uniform profile, here an articulated expression, depending on the whole
technological and human population distributions, arises.

8This number is well defined and strictly positive thanks to (4).
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Theorem 3.3. Let hypotheses of Theorem 3.2 hold and suppose that

(9) g > λ1

where g is defined in (8) and λ1 is the second eigenvalue of the problem
considered above. Define the detrended optimal path Kg(t, θ) := e−gtK(t, θ),
for t ≥ 0. Then

Kg(t, θ)
t→∞−→

∫ 2π

0
K0(η)β(η)dη

e0(θ)

α0
+
∑
n≥1

βn
λn − g

en(θ)


where, for n ≥ 1,

βn :=

∫ 2π

0
(β(η))−1/σN(η)en(η)dη.

Remark 3.4. The following estimates on λ0 can be obtained from its rep-
resentation provided in Section 2.10 of Brown et al. (2013):

(10)
1

2π

∫ 2π

0
A(θ)dθ ≤ λ0 ≤ sup

S1

|A|.

The lower bound in particular assures, given the positivity of A(·), the posi-
tivity of λ0. The upper bound is useful to check (4),

Theorem 2.9.3 of Brown et al. (2013) also gives the following estimates
for the second eigenvalue:

λ1 ≤ sup
S1

A− 1,

useful to check (9).

4. Proofs of the analytical results

4.1. The infinite dimensional setting. We can represent (1) as an ab-
stract dynamical system in infinite-dimension. Some step is needed to de-
scribe this constructions. Consider the space

(11) H := L2(S1) :=

{
f : S1 → R measurable

∣∣ ∫ 2π

0
|f(θ)|2dθ <∞

}
.

This is a Hilbert space when endowed with the inner product 〈f, g〉 :=∫ 2π
0 f(θ)g(θ)dθ, inducing the norm ‖f‖ =

∫ 2π
0 |f(θ)|2dθ. We will also use

the following spaces of real functions defined on S1:

L∞(S1) := {f ∈ H | |f | ≤ C for some C > 0},

H1(S1) := {f ∈ H | ∃ f ′ in weak sense and belongs to H},
H2(S1) := {f ∈ H | ∃ f ′ in weak sense and belong to H1(S1)}.

Suppose from now that that the coefficients of the state equation satisfy the
following conditions:

(12) A ∈ L∞(S1), N ∈ L∞(S1).

The differential operator

Lu :=
∂2u

∂θ2
+A(·)u, u ∈ H2(S1)



ECONOMIC GROWTH AND SPATIAL HETEROGENEITIES 9

is well defined and H-valued. It is also self-adjoint, i.e.

(13) L∗ = L.
The operator L is the sum of the Laplacian operator on S1 with the bounded
operator A : H → H, u 7→ A(·)u. The Laplacian operator is closed on the
domain H2(S1) and generates a C0-semigroup on the space H. Hence, as A
is bounded, we deduce that also L is closed on the domain

D(L) := H2(S1)

and generates a C0-semigroup on the space H. From now on, in order to
avoid confusion, we will denote the elements of H by bold letters. With this
convention, we can formally rewrite (1) as an abstract dynamical system in
the space H:

(14)

{
K′(t) = LK(t)− c(t)N, t ∈ R+,

K(0) = K0 ∈ H,

with the formal equalities K(t)(θ) = K(t, θ), [c(t)N](θ) = c(t, θ)N(θ) and
we will read the original system as (14).9

By general theory of semigroups (see Proposition 3.1 and 3.2, Section II-
1, of Bensoussan et al., 2007, also considering (13)), given c ∈ L1

loc(R+;H),

there exists a unique (weak) solution KK0,c ∈ L1
loc(R+;H) to (14) in the

following sense: for each ϕ ∈ D(L) the function t 7→ 〈KK0,c(t),ϕ〉 is locally
absolutely continuous and

(15)

{
d
dt〈K

K0,c(t),ϕ〉 = 〈KK0,c(t),Lϕ〉 − 〈c(t)N,ϕ〉, a.e. t ∈ R+,

KK0,c(0) = K0 ∈ H.

Consider the positive cone in H, i.e. the set

H+ := {K ∈ H | K(·) ≥ 0} ,
the positive cone in H without the null function, i.e. the set

H+
0 := {K ∈ H | K(·) ≥ 0 and K(·) 6≡ 0} ,

and define the set of admissible strategies as10

A(K0) := {c ∈ L1
loc(R+;H+) | KK0,c(t) ∈ H+

0 ∀t ≥ 0}.
Then we can rewrite the original optimization problem as

(16) (P) V (K0) := sup
c∈A(K0)

J(K0; c),

9The correspondence between the concept of solution to the abstract dynamical system
in H that we introduce below (weak solution) and the solution of can be argued as in
Proposition 3.2, page 131, of Bensoussan et al. (2007).
10In this formulation we require the slightly sharper state constraint KK0,c(t) ∈ H+

0 in
place of the wider (original) one KK0,c(t)(·) ≥ 0 almost everywhere. This is without
loss of generality: indeed, if KK0,c(t) ≡ 0 at some t ≥ 0, the unique admissible (hence
the optimal) control from t on is the trivial one c(·) ≡ 0, so we know how to solve the
problem once we fall into this state and there is no need to define the Hamilton-Jacobi-
Bellman equation at this point. The reason to exclude the null function from the set H+

and considering the set H+
0 is allowing a well-definition of the Hamilton-Jacobi-Bellman

equation.
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where

J(K0; c) :=

∫ ∞
0

e−ρtU(c(t))dt,

and

U : H+ → R+, U(c) :=

∫ 2π

0

c(θ)1−σ

1− σ
N(θ)dθ.

4.2. HJB equation. The Hamilton-Jacobi-Bellman (HJB) equation in H
associated to (16) is defined as follows

(17) ρv(K) = 〈K,L∇v(K)〉+ sup
c∈H+

{U(c)− 〈cN,∇v(K)〉}.

An explicit solution of this equation can be given in a suitable half-space of
H as shown by the following proposition.

Proposition 4.1. Let (4) and (12) hold. The function

(18) v(K) =
〈K, α0e0〉1−σ

1− σ
, K ∈ H+

e0 ,

where

(19) H+
e0 := {K ∈ H | 〈K, e0〉 > 0}.

and

(20) α0 :=

(
σ

ρ− λ0(1− σ)

∫ 2π

0
e0(θ)

− 1−σ
σ N(θ)dθ

) σ
1−σ

,

solves (17) over H+
e0.

Proof. Define the strictly positive cone in H, i.e.

H++ :=

{
f : S1 → R++

∣∣ ∫ 2π

0
|f(θ)|2dθ <∞

}
,

Setting
U∗(α) := sup

c∈H+

{U(c)− 〈cN,α〉}, α ∈ H++,

we have

U∗(α) := sup
c∈H+

∫ 2π

0

(
c(θ)1−σ

1− σ
N(θ)− c(θ)N(θ)α(θ)

)
dθ =

∫ 2π

0
u∗(α(θ))dθ,

where

u∗(q) := sup
c≥0

{
c1−σ

1− σ
N − qcN

}
=

σ

1− σ
Nq−

1−σ
σ , q > 0, N ≥ 0,

with optimizer

(21) c∗(q) = q−
1
σ , q > 0.

Plugging (18) into (17), we need to check the equality

(22)
ρ

1− σ
〈K, α0e0〉1−σ = 〈K,Lα0e0〉〈K, e0〉−σ

+
σ

1− σ

(∫ 2π

0
α
− 1−σ

σ
0 e0(θ)

− 1−σ
σ N(θ)dθ

)
〈K, αe0〉1−σ.

By definition of λ0 and e0, we have Le0 = λ0e0. So (22) holds by (20). �
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For notational reasons we set

β := α0e0,

so we can rewrite (18) as

(23) v(K) =
〈K,β〉1−σ

1− σ
, K ∈ H+

e0 .

Finally, from the definition of β and (20) we get the following identity that
will be useful in the next subsection

(24)

(∫ 2π

0
β(θ)−

1−σ
σ N(θ)dθ

)
=
ρ− λ0(1− σ)

σ
.

4.3. Solution of the optimal control problem via dynamic program-
ming in infinite dimensions. Proposition 4.1 suggests to consider a dif-
ferent set of admissible controls, i.e.

A+
e0(K0) := {c ∈ L1

loc(R+;H+) | KK0,c(t) ∈ H+
e0 ∀t ≥ 0}.

Since H+
0 ⊆ H+

e0 , we have also A(K0) ⊆ A+
e0(K0). We define an auxiliary

problem associated to this new relaxed constraint, i.e.

(25) (P̃) Ṽ (K0) := sup
c∈A+

e0
(K0)

J(K0; c).

Clearly we have the inequality

(26) Ṽ ≥ V over H+
e0 .

The reason to consider the relaxed state constraint KK0,c(·) ∈ H+
e0 , in place

of the stricter original one KK0,c(·) ∈ H+
0 , is that the former is somehow

the natural one from the mathematical point of view and allows a natural
solution. On the other hand, the real constraint is still KK0,c(·) ∈ H+, so

we need to establish a relationship between the two problems (P) and (P̃).
Our approach relies on the following obvious result.

Lemma 4.2. If c∗ is an optimal control for (P) and KK0,c(·) ∈ H+
0 (i.e.

the solution of the optimization problem with relaxed state constraint actually
satisfies the stricter one), then c∗ is optimal also for (P).

We focus on the solution to ˜(P). Considering (21), the feedback map
associated to the function v defined in (23) results in

(27) H+
e0 → H

+
0 , K 7→ 〈β,K〉β−

1
σ ,

where β−
1
σ (θ) := (β(θ))−

1
σ . The associated closed loop equation

(28)

{
K′(t) = LK(t)− 〈β,K(t)〉β−

1
σN = LK(t)− 〈β,K(t)〉β−

1
σN,

K(0) = K0 ∈ H+
0 ,

admits a unique weak solution, i.e. there exists a unique function
KK0,∗∈ L1

loc(R+;H) such that the function t 7→ 〈KK0,∗(t),ϕ〉 is absolutely
continuous for every ϕ ∈ D(L) and
(29){

d
dt〈K

K0,∗(t),ϕ〉 = 〈KK0,∗(t),Lϕ〉 − 〈β,KK0,∗(t)〉〈ϕ,β−
1
σN〉, a.e. t ∈ R+,

KK0,∗(0) = K0 ∈ H+
0 .
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Consider (24) and set

(30) g := λ0 −
∫ 2π

0
N(θ)β(θ)−

1−σ
σ dθ = −ρ− λ0

σ
.

Taking ϕ = β in (29), we get

(31) 〈KK0,∗(t),β〉 = 〈β,K0〉egt, t ≥ 0,

Hence
K0 ∈ H+

e0 ⇒ KK0,∗(t) ∈ H+
e0 .

So the control

(32) c∗(t) := 〈β,K(t)〉β−
1
σ = 〈β,K0〉β−

1
σ egt, t ≥ 0,

belongs to A+
e0(K0).

Lemma 4.3. For each c ∈ A+
e0(K0) we have

〈KK0,c(t),β〉 ≤ 〈β,K0〉eλ0t, ∀t ≥ 0.

Proof. Denote by 0 the null control, i.e. the control c(t)(θ) = 0 for each
(t, θ) ∈ R+ × S1. Then (15) yields 〈KK0,0(t),β〉 = 〈β,K0〉eλ0t for every
t ≥ 0. On the other hand, as β(θ) > 0 for each θ ∈ S1, standard comparison
applied to the ODE (15) yields

(33) 〈KK0,c(·),β〉 ≤ 〈KK0,0(·),β〉,
and the claim follows. �

Theorem 4.4. Let (4) and (12) hold. Let K0 ∈ H+
e0 and let v be the function

defined in (23). Then v(K0) = Ṽ (K0) and the control c∗ defined in (32) is

optimal for (P̃) starting from the initial state K0; i.e. J(K0; c
∗) = Ṽ (K0).

Proof. The fact that c∗ ∈ A+
e0(K0) has been already observed. We prove

now the optimality. By the usual arguments employed to prove Verification
Theorem with a Dynamic Programming approach, using the fact that v is
a solution to (17) on A+

e0(K0) one gets, for every c ∈ A+
e0(K0),

(34) e−ρtv(KK0,c(t))− v(K0) = −
∫ t

0
e−ρsU(c(s))ds

+

∫ t

0
e−ρs{U(c(s))− 〈c(s)N,∇v(KK0,c(s))〉 − U∗(∇v(KK0,c(s))}ds

We pass (34) to the limit for t→∞.

- We use (4) and Lemma 4.3 in the left hand side;
- we use monotone convergence in the right hand side, as, by definition

of U∗, the integrand is nonpositive.

So, we get the so called fundamental identity, valid for each c ∈ A+
e0(K0):

(35) v(K0) = J(K0; c)

+

∫ ∞
0

e−ρs
{
U∗(∇v(KK0,c(s))−

(
U(c(s))− 〈c(s)N,∇v(KK0,c(s))〉

)}
ds.

From (35), by definition of U∗ we first get v(K0) ≥ Ṽ (K0). Then,
observing that the integrand in (35) vanishes when c = c∗, we obtain
v(K0) = J(K0; c

∗). The claim follows. �
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From Theorem 4.4 and Lemma 4.2, we get our first main result corre-
sponding to Theorem 3.2.

Corollary 4.5. Let (4) and (12) hold. Let K0 ∈ H+
0 , let c∗ be the control

defined in (32) and assume that c∗ ∈ A(K0). Then v(K0) = V (K0) and c∗

is optimal for (P).

The study the convergence of the transitional dynamics to a stationary
state gives the following claim corresponding to Theorem 3.3.

Proposition 4.6. Let (4), (9) and (12) hold. Define the detrended optimal
path

KK0,c∗
g (t) := e−gtKK0,c∗(t), t ≥ 0.

Then

KK0,c∗
g (t)

t→∞−→ 〈K0,β〉

α−10 e0 +
∑
n≥1

βn
λn − g

en

 , in L2(S1),

where βn := 〈en,β−
1
σN〉 for n ≥ 1.

Proof. As KK0,c∗(·) is a weak solution of (28), KK0,c∗
g (·) is a weak solution

of {
K′(t) = LK(t)− gK(t)− 〈β,K(t)〉β−

1
σN

K(0) = K0 ∈ H+
0 ,

i.e., for every ϕ ∈ D(L),
(36){

d
dt〈K

K0,c∗
g (t),ϕ〉 = 〈KK0,c∗

g (t), (L − g)ϕ〉 − 〈β,KK0,c∗
g (t)〉〈ϕ,β−

1
σN〉

KK0,c∗
g (0) = K0 ∈ H+

0 .

As already recalled in Section 3 there exists an orthonormal basis of L2(S1)
of eigenfunctions {en}n≥0 corresponding to the sequence of eigenvalues
{λn}n≥0 so we have the Fourier series expansion

KK0,c∗
g (t) =

∑
n≥0

Kg,n(t)en, where Kg,n(t) := 〈KK0,c∗
g (t), en〉, n ≥ 0.

We compute now the Fourier coefficients Kg,n(t).

- When n = 0, we already know from (31)

Kg,0(·) ≡ 〈K0, e0〉 = α−10 〈K0,β〉.
- When n ≥ 1, we have

K ′g,n(t) = (λn − g)Kg,n(t)− 〈K0,β〉βn.
So, we can explicitly express the Fourier coefficients as:

Kg,n(t) = 〈K0, en〉e(λn−g)t + 〈K0,β〉
βn

λn − g
(1− e(λn−g)t).

Considering that λn ≤ λ1 < g for every n ≥ 1, we have the convergence

Kg,n(t)
t→∞−→ 〈K0,β〉

βn
λn − g

, uniformly in n ≥ 1.

The claim follows. �
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5. Numerical analysis

The explicit representation of the long-run configuration of the economy
given in Theorem 3.3 can be used to undertake a numerical analysis of
the system in some specific cases of interest. To numerically compute the
eigenfunctions en we use the package Chebfun11 written for MATLAB.

First we calibrate the model using realistic values. In all the simulations
we choose the discounting parameter ρ equal to 3% (consistent e.g. with
the data of Lopez, 2008) and the inverse of the elasticity of intertemporal
substitution σ equal to 5 (here it is also the constant relative risk aversion of
the utility function so its value is coherent with those found e.g. by Barsky
et al., 1997). In all our simulations we use the non-uniform technological
distribution A(·) on [0, 2π] having a pick at the point π (the “core”) and
attaining lower values in the further locations (the “periphery”) represented
in the first picture of Figure 1. The values of 1/A (that is the value of
the ratio capital-over-output K/Y that in the model also equals the wealth-
over-GDP ratio) is in the range 4÷6 in line with the values found by Piketty
and Zucman (2014).

In the described situation, computing the first eigenvalue of the operator
L defined in (3) and using (8) we get the reasonable value of the global
growth rate equal to 3.17%. As a further check we also observe that the
(spatial-heterogeneous) saving rate in the long-run varies from 18% to 37%
in line for instance with the World Bank data (see e.g. World Bank Group,
2016).

The effect of this non-uniform spatial technological distribution, whenever
the population is constant with density everywhere equal to 1, is represented
in Figure 1. We can promptly see the effect of the spatial polarization of
the capital marginal (and average) productivity on capital accumulation in
the first picture of the second line of Figure 1. In fact the capital tends to
accumulate at the core where it is more productive while areas with smaller
technology level remain behind: the higher productivity of capital in the
core locations pushes the planner to increase investments and thus savings
relatively more in these regions as shown in the second picture of the third
line of Figure 1. As a byproduct the planner privileges consumption in
peripheral regions but this is a second-order effect of small magnitude as
one can see in the first picture of the third line of Figure 1.

Looking at the (spatial) relative magnitudes in the distributions of A
and of the long-run detrended K, we can easily realize that the capital
distribution is much less concentrated than the technological level12. We
have indeed an endogenous spatial spillover effect that is the combined result
both of the capital exogenous diffusivity and the endogenous investment and
consumption decisions by the planner.

11See Birkisson and Driscoll (2011) and Driscoll and Hale (2016) for details on the imple-
mentation of the routines on linear differential operators and in particular on eigenfunc-
tions of Sturm-Liouville operators in Chebfun.
12Conversely the concentration of the long-run detrended output is more picked because
the output has the form Y = AK.
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Figure 1. Core-periphery effect

The difference with respect to the results of Boucekkine at al. (2013) is
crystal clear: once we introduce the spatial heterogeneity in capital produc-
tivity, the optimal detrended capital does not converge anymore to a spatial-
homogeneous distribution. Indeed the situation described by Boucekkine at
al. (2013), where all the detrended variables (capital, output, consumption,
investment) converge to the spatial-homogeneous configuration, arises as a
special case, only if A is constant over the locations. The behaviour confirms
the intuition of Camacho at al. (2008) in the case of neoclassical produc-
tion function. Indeed, even if in that work “the authors cannot prove the
existence nor the uniqueness of the steady state solution to problem”, their
simulations in Sections 4.1 and 4.2 suggest that in the long-run the system
converges towards a constant distribution only if A is constant across space.

Figure 2 emphasizes the pure dilution effect we have in the model. We
consider the same technological distribution as in the previous picture and
we vary uniformly the population density, more precisely we double the
previous constant population density (in the picture the previous benchmark
situation is in blue, with continuous line, while the new profile is in red,
dotted line). The effect, in terms of aggregate optimal behavior is zero while
per-capita variables are mechanically halved. This effect could be predicted
directly from expression (6) taking into account the effect of population
distribution on α given by (5). Observe that the pure dilution effect is not
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Figure 2. The pure dilution effect

due to the homogeneous distribution of the population we use: whatever
the initial population distribution, a uniform increase of the population of
n% in the whole space induces a spatial uniform proportional reduction (by
a factor 1

1+n/100) of per capita variables.

The dilution effect also appears in the finite horizon neoclassical spatial
version of the model studied by of Camacho et al. (2008) (see in particular
Section 4.2) but in their case the interaction between population distribu-
tion and capital accumulation decisions is partially driven by the factors’
decreasing returns typical of the Cobb-Douglas production function.

In Figure 3 we consider a concentration of capital productivity and pop-
ulation density in the same areas (a quite frequent configuration) showing
how the core-periphery and the population effects combine and can partially
offset each other. In the simulation we keep the same technology distribution
as before and we consider two possible population distributions: in the first
one (the blue and continuous line in the pictures) we have the same situation
as in Figure 1, where the population is uniformly distributed across space
with a constant unitary density, while in the second (the red and dotted line
in the picture) the population has the same total size but is concentrated
in the high productivity zones. In this second case two distinct motivations
drive the planner: on one hand, she will tend to invest more in the more
productive areas, but on the other, she is tempted to assign a reasonable
enough per capita level of consumption in each region (again due to the Ben-
thamite form of the utility functional). The total effect is depicted in the
various pictures of Figure 3: the aggregate investment in more productive
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Figure 3. Core-periphery and population effect at work

areas for the second population profile remains relatively higher13 but the
effect is mitigated because aggregate consumption is higher in these areas as
well. All in all the distribution of long-run detrended capital is much more
uniform in the second case so that capital accumulates relatively more in
less productive areas. For this reason the change in the population distri-
bution translates in a sort of loss of efficiency of the system: as one can see
(third picture of the third line of Figure 3), per-capita consumption in the
new configuration is always smaller that in the original one at any location.

6. Conclusions

In this paper we introduce and study a general spatial model of economic
growth. We are able to solve it analytically by using dynamic programming
in infinite dimensions. This is made possible thanks to the use of the eigen-
functions of the linear Sturm-Liouville problem related to the consumption-
free dynamics of the model. With respect to previous related contributions,
our model is more general both for the possibility of studying heterogeneous
spatial distributions of technology and for allowing for non-homogeneous
spatially distributed population. The numerical simulation identifies the
two key effects shaping the long-run configuration: core-periphery polariza-
tion and dilution.

13This outcome depends on the chosen distribution of the population, a bigger concentra-
tion of the population would of course accentuate the population effect.
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